K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>BD=ED
b: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

d: AF=AC

DF=DC

=>AD là trung trực của CF

=>AD vuông góc CF

2 tháng 6 2018

1 tháng 12 2021

Hình bạn ơi 

1 tháng 12 2021

a+b)  Xét \(\Delta AFE\) và \(\Delta ACB:\)

Ta có:\(A\) là góc chung 

AE=AB (gt)

AF=AC (gt)

Vậy \(\Delta AFE=\Delta ACB\)(c.g.c)

Vậy \(AFE=ACB\) góc tương ứng 1 

Xét \(\Delta ABD\) và  \(\Delta AED\)

Ta có : \(BAD=EAD\) ( gt )

AD là cạnh chung

AB=AE (cạnh tương ứng)

Vậy \(\Delta ABD=\Delta AED\)  ( c.g.c)

Vậy BD=ED (cạnh tương ứng ) (2)

 

Xét \(\Delta BDF\) và \(\Delta EDC\)

Ta có:  EC=BF ( Do EA=BA và AC=AF mà EC=AC-EA, BF=AF-AB )
Từ (1)(2) 

Vậy \(\Delta BDF=\Delta EDC\) ( c.g.c)

c. Ta có: \(BDF=EDC\) ( góc đối, cm câu a)

Nên F, D, E thẳng hàng

d. AC=AF (cạnh tương ứng, cm trên)

Nên AD là đường phân giác đồng thời đường cao ứng \(\Delta ACF\) cân nên AD vuông góc FC

 

28 tháng 11 2017

a)   Xét tam giác ABD và tam giác AED có:

             AB=AE (GT)

             góc BAD = góc EAD (AD là tia phân giác)

             AD chung

      Suy ra tam giác ABD=tam giác AED(CGC)

      Suy ra BD=BE (hai cạnh tương ứng)

      Xét tam giác AFD và tam giác ACD có:

             AF=AC(GT)

             Góc FAD= góc CAD (AD là tia phân giác của góc A)

             AD chung

       suy ra tam giác AFD và tam giác ACD(CGC)

       suy ra DF=DC(2 cạnh tương ứng)

       vì AB+BF=AE+EC (AF=AC)

       Mà AB=AE(GT)

       Suy ra BF=EC

       Xet tam giác BFD và tam giác ECD có:

             DB=DE(CMT)

             DF=DC(CMT)

             BF=EC(CMT)

      Suy ra tam giac BFD=tamgiác ECD (CCC)

b)   BF=EC (CMT)

c)    vì tam giác BFD=tam giác ECD (CMT)

       Suy ra gócBDF= gócEDC(2 GÓC TƯƠNG  ỨNG)

       Mà 2 góc này ở vị trí đối đỉnh 

       suy ra 3 điểm F,D,E  thẳng hàng

d)    xét tam giác AFD có:

       AF=EC(GT)

       Suy ra tam giác AFC cân tại A

      mà AD là tia phân giac của góc A(gt)

      suy ra AD cũng là đường cao của tam giác FAC

      hay AD vuông góc FC

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

góc DBF=góc DEC

DB=DE

góc BDF=góc EDC

Do đó: ΔDBF=ΔDEC

=>BF=EC

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

Xét ΔBDE và ΔEDC có

\(\widehat{BDF}=\widehat{EDC}\)

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

Do đó: ΔBDF=ΔEDC