K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Chọn đáp án D

14 tháng 2 2018

Ta có:      \(x+y+z=0\)

\(\Leftrightarrow\)  \(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz =0)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy      \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)

24 tháng 4 2021

\(x+y+z=0\)

\(-x=y+z\)

\(x^2=\left(y+z\right)^2\) 

\(x^2=y^2+2yz+z^2\) 

\(y^2+z^2-x^2=-2yz\)

Tương tự:

\(z^2+x^2-y^2=-2zx\)

\(x^2+y^2-z^2=-2xy\)

➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\) 

Vậy S = 0

30 tháng 8 2019

Ta có:

\(x+y+z=0\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)

Vậy S=0

22 tháng 12 2018

2 tháng 4 2017