Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Ta có
Gọi Suy ra z = x + (2+y).i
Suy ra
Theo giả thiết, ta có
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Đáp án B.
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Ta có
Theo bài ra ta có:
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(-1;1; - 8 ) , bán kính r=6
Chọn đáp án C.
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Đáp án là D.
Ta có w + i = i z − i ⇒ w + i = i z − i = 5.
Vậy các điểm biểu diễn số phức w là đường tròn có bán kính r=5