Có tất cả bao nhiêu cặp số thực (x,y) sao cho x ∈ - 1 ; 1 và ln ( x - y ) x - 2017 y + e 2018 . Biết rằng giá trị lớn nhất của biểu thức P = e 2018 ( y + 1 ) x 2 - 2018 x 2 với ( x ; y ) ∈ S đạt được tại (x0, y0). Mệnh đề nào sau đây đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 10 = 1.10 =10.1 = 2.5 = 5.2
Mà 2x + 1 lẻ nên 2x + 1 = 1 hoặc 2x + 1 = 5
=> x = 0 hoặc 2 nhưng x = 0 thì x.y = 0 nên ta chọn x = 2 khi đó y - 3 = 2
=> y = 5
Vậy khi đó x.y lớn nhất là : x.y = 2.5 = 10
Đáp án A
Ta có ln x - y 2 - 2017 x = ln x - y y - 2017 y + e 2018 ⇔ x - y ln x - y - 2017 x - y = e 2018
⇔ ln x - y - e 2018 x - y - 2017 = 0 . Xét hàm số f t = ln t - e 2018 t - 2017 ,có f ' t = 1 t + e 2018 t 2 > 0 ; ∀ t > 0
Suy ra f(t) là hàm số đồng biến trên 0 ; + ∞ mà f e 2018 = 0 ⇒ t = x - y = e 2018
Khi đó P = e 2018 x 1 + x - e 2018 - 2018 x 2 → g x
Lại có g ' x = e 2018 x x 2019 + 2018 x - 2018 e 2018 - 4036 x ⇒ g ' ' < 0 ; ∀ x ∈ - 1 ; 1
Nên g'(x) là hàm số nghịch biến trên [-1;1] mà g ' - 1 = e - 2018 + 2018 > 0
Và g ' 0 = 2019 - 2018 e 2018 < 0 nên tồn tại x 0 ∈ - 1 ; 0 sao cho g ' x 0 = 0
Vậy m a x - 1 ; 1 g x = g x 0 hay giá trị lớn nhất của P đạt được khi x 0 ∈ - 1 ; 0 .
Chọn B.
Với ,
xét từng TH phá dấu trị tuyệt đối, ta tìm được nghiệm
-3 ≤ y ≤ 0
Khi đó và
Do đó
Vậy có tất cả hai cặp số thực (x; y) thỏa mãn yêu cầu bài toán.
Đáp án B.
Với 4 y - y - 1 + y + 3 2 ≤ 8 , xét từng TH phá giá trị tuyệt đối, ta tìm được nghiệm - 3 ≤ y ≤ 0 .
Khi đó 3 x 2 - 2 x - 3 - log 3 5 = 3 x 2 - 2 x - 3 3 log 3 5 = 3 x 2 - 2 x - 3 5 ≥ 1 5 và y ∈ - 3 ; 0 ⇔ y + 4 ∈ 1 ; 4 ⇒ 5 - y + 4 ≤ 5 - 1 = 1 5 .
Do đó 3 x 2 - 2 x - 3 - log 3 5 = 5 - y + 4 ⇔ [ x = - 1 x = 3 y = - 3 ⇒ x ; y = - 1 ; - 3 ; 3 ; - 3 .
Vậy có tất cả hai cặp số thực (x;y) thỏa mãn yêu cầu bài toán.
Đáp án B.
Với 4 y - y - 1 + y + 3 2 ≤ 8
xét từng TH phá giá trị tuyệt đối, ta tìm được nghiệm - 3 ≤ y ≤ 0
Khi đó 3 x 2 - 2 x - 3 - log 3 5 = 3 x 2 - 2 x - 3 3 log 3 5 = 3 x 2 - 2 x - 3 5 ≥ 1 5
và y ∈ - 3 ; 0 ⇔ y + 4 ∈ 1 ; 4 ⇒ 5 - y + 4 ≤ 5 - 1 = 1 5
Do đó
Vậy có tất cả hai cặp số thực (x; y) thỏa mãn yêu cầu bài toán.
\(\left|x\right|+\left|y\right|=1=0+1\)
TH1: \(\left\{{}\begin{matrix}\left|x\right|=0\\\left|y\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left|x\right|=1\\\left|y\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=0\end{matrix}\right.\)
Đáp án A
Ta có
Xét hàm số
Suy ra f(t) là hàm số đồng biến trên
Khi đó
Lại có
Nên g’(x) là hàm số nghịch biến trên
Vậy m a x - 1 ; 1 g ( x ) = g ( x 0 ) hay giá trị lớn nhất của P đạt được khi x 0 ∈ ( - 1 ; 0 )