Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y = sin x 2 x 3 là
A. 0.
B. 1.
C. 2.
D. 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Lời giải:
TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)
\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)
Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$
\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)
Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths
Vậy có tổng 3 TCN và TCĐ
Chọn C.
Với đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng x = 2 b làm tiệm cận đứng
Theo đề bài: x = 2 là tiệm cận đứng của đồ thị nên
Với b ≠ 0 đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng y = a b làm tiệm cận ngang.
Theo đề bài: y = 3 là tiệm cận ngang của đò thị hàm số nên
Vậy a + b = 4.
Chọn đáp án C
thì đồ thị hàm số y = a x + 1 b x - 2 có hai đường tiệm cận:
Đường tiệm cận đứng là x = 2 b và đường tiệm cận ngang là y = a b
Từ giả thiết bài toán ta có:
Đáp án là D.
Đồ thị có tiệm cận đứng và tiệm cận ngang lần lượt là: x = 2 ; y = 2.
Chọn C