Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Tìm tất cả các giá trị thực của tham số m để phương trình y = f(x) - 1 có đúng hai nghiệm.
A. m = 2, m ≥ -1
B. m > 0, m = -1
C. m = -2; m > -1
D. -2 < m < -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Phương pháp
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.
Cách giải
Ta có:
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.
Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì
Đáp án C
f ( x ) − 1 = m ⇔ f ( x ) = m + 1 có hai nghiệm khi và chỉ khi m + 1 = − 1 m + 1 > 0 ⇔ m = − 2 m > − 1
Chọn A
Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.
Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.
Dựa vào bảng biến thiên có .
Đáp án A.
Ta có f x − m = 0 ⇔ f x = m . Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f x và đường thẳng y = m .Do đó để phương trình đã cho có nghiệm duy nhất thì đường thẳng y = m phải cắt đồ thị hàm số y = f x tại một điểm duy nhất. Khi đó m ∈ 3 ; + ∞ .
Chọn C.
f(x) - 1 = m
Dựa vào bảng biến thiên, để phương trình f(x) - 1 có đúng hai nghiệm thì