Cho hình chop SABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, góc giữa SB và mặt đáy bằng 60 ° . Tính khoảng cách h từ A tới mặt phẳng (SBC).
A. h = a 2 2
B. h = a 3 2
C. h = a 2
D. h = a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ \(AE\perp SB\) (\(E\in SB\))
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp AE\)
\(\Rightarrow AE\perp\left(SBC\right)\)
\(\Rightarrow\widehat{ACE}\) là góc giữa AC và (SBC)
Hệ thức lượng trong tam giác SAB:
\(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{3}}{2}\)
\(AC=AB\sqrt{2}=a\sqrt{2}\)
\(\Rightarrow sin\widehat{ACE}=\dfrac{AE}{AC}=\dfrac{\sqrt{6}}{4}\)