K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

15 tháng 9 2018

y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5

Ta có  ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1

Giá trị lớn nhất của hàm số   y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi

  m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3

Chọn B.

6 tháng 2 2022

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

6 tháng 2 2022

sai

10 tháng 1 2022

\(y=\left|x^2-2x-m\right|=-x^2+2x+m\)

\(\left(nếu:x^2-2x-m< 0\right)\)

\(f\left(x\right)=-x^2+2x+m\Rightarrow x=\dfrac{-b}{2a}=1\in\left[-3;2\right]\)

\(f\left(-3\right)=m-15\)

\(f\left(1\right)=m+1\)

\(f\left(2\right)=m\Rightarrow f\left(-3\right)< f\left(2\right)< f\left(1\right)\)

\(\Rightarrow max_{f\left(x\right)}=m+1=10\Leftrightarrow m=9\)

\(do..m< 0\Rightarrow m=9\left(ktm\right)\)

\(\Rightarrow không\) \(có\) \(giá\) \(trị\) \(m\) \(thỏa\)

13 tháng 8 2017

Đáp án B

12 tháng 7 2017

13 tháng 11 2019

24 tháng 8 2016

\(f'\left(x\right)=\frac{\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x+1}}}{x+1}=\frac{1}{\sqrt{x}\left(\sqrt{x+1}\right)^3}>0;\forall x\in\left(0;4\right)\)

Mà f(x) liên tục trên [0;4] nên hàm số đồng biến trên [0;4]

\(\Rightarrow Maxf\left(x\right)_{\left[0;4\right]}=f\left(4\right)\)

YCBT \(\Leftrightarrow\begin{cases}m>1\\f\left(4\right)\le3\end{cases}\)  \(\Leftrightarrow\begin{cases}m>1\\\frac{4+m}{\sqrt{5}}\le3\end{cases}\)\(\Leftrightarrow1< m< 3\sqrt{5}-4\)

12 tháng 6 2018