K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

2 tháng 5 2019

Chọn đáp án D

Phương pháp

Cho ba số a, b, c lập thành CSN thì ta có: b 2 = a c .

Cách giải

Ta có:  ( x - 1 ) ( x - 3 ) ( x - m ) = 0

Phương trình đã cho có 3 nghiệm phân biệt

+) Giả sử 1; 3; m lập thành 1 CSN tăng

+) Giả sử m; 1; 3 lập thành 1 CSN tăng

+) Giả sử 1; m; 3 lập thành 1 CSN tăng

Vậy có 3 giá trị m thỏa mãn

18 tháng 7 2019

Chọn A.

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x1; x2; x3 lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có x1.x2.x3 = 64

Theo tính chất của cấp số nhân, ta có x1x3 = x22. Suy ra ta có x23 = 64 x2 = 4

Thay x = 4 vào phương trình đã cho ta được: 43 – 7m.42 + 2(m2 + 6m).4 – 64 = 0

⇔ m2 – 8m = 0

+ Điều kiện đủ: Với m = 0  thay vào phương  trình đã cho ta được: x3 – 64 = 0 hay x = 4

(nghiệm kép-loại)

Với m = 8 thay vào phương trình đã cho nên ta có phương trình x3 – 56x2 + 224x – 64 = 0   

Giải phương trình này, ta được 3  nghiệm phân biệt lập thành cấp số nhân.

Vậy m = 8 là giá trị cần tìm.

NV
26 tháng 12 2021

Theo hệ thức Viet: \(x_1+x_2+x_3=-\dfrac{b}{a}=3\)

Do 3 nghiệm lập thành cấp số cộng

\(\Rightarrow x_1+x_2+x_3=3x_2\)

\(\Rightarrow3x_2=3\Rightarrow x_2=1\)

Thế vào pt ban đầu:

\(\Rightarrow1-3+m+2m-1=0\Rightarrow m=1\)

26 tháng 12 2021

bạn ơi tại sao x1+x2+x3=3x2 vậy

 

21 tháng 7 2018

Chọn D

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x 1 , x 2 , x 3  lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có  x 1 . x 2 . x 3 = 8

Theo tính chất của cấp số nhân, ta có x 1 x 3 = x 2 2 . Suy ra ta có  x 2 3 = 8 ⇔ x 2 = 2.

Với nghiệm x=2, ta có m 2 + 6 m − 7 = 0 ⇔ m = 1 m = − 7  

+ Điều kiện đủ: Với m= 1 hoặc m = -7 thì m 2 + 6 m = 7  nên ta có phương trình:  x 3 − 7 x 2 + 14 x − 8 = 0.

Giải phương trình này, ta được các nghiệm là 1,2,4 Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2

Vậy m= 1 và m=  -7  là các giá trị cần tìm.

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

NV
11 tháng 11 2021

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

6 tháng 5 2019

Đáp án B

8 tháng 12 2017

Chọn C.

Đặt t = x2.

Khi đó ta có phương trình: t2 – 2(m + 1)t + 2m + 1 = 0

Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt 

+ Với điều kiện trên thì  phương trình (*) có hai nghiệm dương phân biệt là t1; t2.

Khi đó phương trình đã cho có bốn nghiệm phân biệt là .

Bốn nghiệm này lập thành một cấp số cộng khi

Theo định lý Vi-ét ta có: t1 + t2 = 2(m + 1) ; t1.t2 = 2m + 1.

Suy ra ta có hệ phương trình 

Chỉ có m = 4  thỏa mãn điều kiện .

Do đó 43 = 64.