Với điều kiện nào của tham số m cho dưới đây, đường thẳng d:y=-3x+m cắt đồ thị (C) của hàm số y = 2 x + 1 x - 1 tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB thuộc đồ thị (C) với O(0;0) là gốc tọa độ?
A.
B.
C.
D. Với mọi m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương trình hoành độ giao điểm của (C) và d là:
(*)
(C) cắt d tại hai điểm phân biệt có hai nghiệm phân biệt x1, x2
Gọi và là các giao điểm của (C) và d với
Khi đó
Ngoài ra, ta có thể kiểm tra sau khi có Khi đó, ta loại các phương án m = 1; m = 5
Thử một phương án m = -2, ta được phương trình:
Đáp án là B.
Phương trình hoàng độ giao điểm của
C & d : x + m 2 x − 1 = − x + 1 ; x ≠ 1 2
⇔ 2 x 2 + 2 m x − m − 1 = 0 (1)
C & d cắt nhau tại hai điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt và khác 1 2 .
Khi đó: m 2 + 2 m + 2 > 0 − 1 2 ≠ 0 ⇔ m ∈ ℝ .
Đáp án B
Phương pháp: Xét phương trình hoành độ giao điểm, đưa phương trình về phương trình bậc hai và sử dụng công thức tính khoảng cách, định lý Vi-et cho phương trình bậc hai để tìm m
Cách giải:
Xét phương trình hoành độ
giao điểm:
Vậy m = 4 ± 10
Lời giải:
PT hoành độ giao điểm:
$\frac{-4x+12}{x+1}=2x+m$
$\Rightarrow -4x+12=(2x+m)(x+1)$
$\Leftrightarrow 2x^2+x(m+6)+m-12=0(*)$
Ta thấy:
\(2(-1)^2+(-1)(m+6)+m-12=-16\neq 0\)
$\Delta (*)=(m+6)^2-8(m-12)=m^2+4m+132=(m+2)^2+128>0$ với mọi $m$
$\Rightarrow (*)$ luôn có 2 nghiệm pb khác -1 với mọi $m$
Tức là $(d)$ cắt $(C)$ tại 2 điểm phân biệt với mọi $m$ (đpcm)
Đáp án B
Phương trình hoành độ giao điểm của (C) và d:
Khi đó d cắt (C) tại hai điểm phân biệt A và B (*)
Gọi G là trọng tâm của tam giác OAB ta có O G → = 2 3 O I ⇀ với I là trung điểm của AB.
Tìm được Do đó,
Chú ý: Để làm bài này khi thực hiện trắc nghiệm, ta nên tìm đến điều kiện (*), sau đó loại các kết quả và Sau đó, lấy một giá trị nguyên của m để kiểm tra giả thiết bài cho, giả sử với m = -2.
Ta còn lại đáp số của bài toán.