Rút gọn:
a, C=1+3+3^2+3^3+.....................................+3^20
b, B=2+2^2+2^3+.........................................+2^49+2^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `(2x+5)^3-(2x-5)^3-(120x^2+49)`
`=(2x+5-2x+5)[(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)`
`=10(12x^2+25)-(120x^2+49)`
`=120x^2+250-120x^2-49`
`=201`
b) `(4-5x)^2-(3+5x)^2=(4-5x+3+5x)(4-5x-3-5x)=7.(-10x+1)=-70x+7`
Lời giải:
a.
$(2x+5)^3-(2x-5)^3-(120x^2+49)$
$=[(2x+5)-(2x-5)][(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)$
$=10(4x^2+20x+25+4x^2-25+4x^2-20x+25)-(120x^2+49)$
$=10(12x^2+25)-(120x^2+49)=250-49=201$
b.
$(4-5x)^2-(3+5x)^2=[(4-5x)+(3+5x)][(4-5x)-(3+5x)]$
$=7(1-10x)$
a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)
\(=4x^2-12x+9-4x^2+1+6x-9\)
\(=-6x+1\)
c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
=1
a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)
b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)
c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
a) \(A=\dfrac{2^6\cdot9^2}{6^4\cdot8}\)
\(=\dfrac{2^6\cdot\left(3^2\right)^2}{3^4\cdot2^4\cdot2^3}\)
\(=\dfrac{2^6\cdot3^4}{3^4\cdot2^7}\)
\(=\dfrac{1}{2}\)
b) \(B=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^2\cdot9^2}\)
\(=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^2\cdot\left(3^2\right)^2}\)
\(=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^6}\)
\(=\dfrac{3}{2^2}\)
\(=\dfrac{3}{4}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}=14\sqrt{2}-9\sqrt{2}+2\sqrt{2}=7\sqrt{2}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}=5\sqrt{10}+10-5\sqrt{10}=10\)
c) \(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}=6-5\sqrt{6}-6=5\sqrt{6}\)
d) \(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}=12\sqrt{3}+6\sqrt{3}-3\sqrt{3}=15\sqrt{3}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}=2\sqrt{3}+3\sqrt{3}=\left(\sqrt{3}+1\right)=4\sqrt{3}-1\)
f) \(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}.\dfrac{2}{\sqrt{2}+1}=2\sqrt{2}-\left(12-6\sqrt{2}\right)=8\sqrt{2}-12\)
Bài 2:
a) \(=x^2-36y^2\)
b) \(=x^3-8\)
Bài 3:
a) \(=x^2+2x+1-x^2+2x-1-3x^2+3=-3x^2+4x+3\)
b) \(=6\left(x-1\right)\left(x+1\right)=6x^2-6\)
b: Ta có: \(\left(x-3\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+9\left(x+2\right)^2\)
\(=x^3-9x^2+27x-27-x^3-8+9x^2+36x+36\)
\(=53x+1\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
a ) C = 1 + 3 + 32 + 33 + ....... + 320
<=> 3C = 3.( 1 + 3 + 32 + 33 + ...... + 320 )
<=> 3C = 3 + 32 + 33 + 34 + ....... + 321
<=> 3C - C = ( 3 + 32 + 33 + 34 + ....... + 321 ) - ( 1 + 3 + 32 + 33 + ...... + 320 )
<=> 2C = 321 - 1
=> C = ( 321 - 1 ) : 2
b ) B = 2 + 22 + 23 + ...... + 250
<=> 2B = 2.( 2 + 22 + 23 + ...... + 250 )
<=> 2B = 22 + 23 + 24 + ....... + 251
<=> 2B - B = ( 22 + 23 + 24 + ...... + 251 ) - ( 2 + 22 + 23 + ...... + 250 )
=> B = 251 - 2
a, Ta có: 3C=3+3^2+3^3+3^4+...+3^21
3C-C=(3+3^2+3^3+...+3^20+3^21)-(1+3+3^2+...+3^19+3^20)
<=>2C = 3^21 - 1 - 3^20 =3^20. (3-1) -1=3^20 .2 -1
=>C\(=\frac{3^{20}.2-1}{2}=3^{20}-\frac{1}{2}=3^{20}-0,5\)