K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Kudo shinichi còn onl ko đó??

29 tháng 1 2016

Vô danh sách bạn bè là biết mà mokona

14 tháng 10 2019

Chọn C

21 tháng 7 2015

a;b;c là 3 cạnh của tam giác => a; b; c dương

Với a; b dương ta có:  \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)

Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)

=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc 

Dấu = xảy ra khi a = b = c

=> tam giác có 3 cạnh là a; b; c là tam giác đều

25 tháng 9 2018

Chọn D

18 tháng 5 2018

Chỉnh sửa: \(a^2+b^2+c^2+2abc\ge\frac{52}{27}\)

19 tháng 5 2018

Theo BĐT AM-GM ta có:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(\frac{3-\left(a+b+c\right)}{3}\right)^3=\frac{1}{27}\)

\(\Leftrightarrow ab+bc+ca+1-\left(a+b+c\right)-abc\le\frac{1}{27}\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow4-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow a^2+b^2+c^2+2abc\ge\frac{52}{27}\)

4 tháng 3 2018

Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm

17 tháng 4 2020

A B C A' B' C'

\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)

Áp dụng tính chất DTSBN , ta có :

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)

Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)

Với CABC và CA'B'C'  lần lượt là chu vi của tam giác ABC , A'B'C' 

\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)

\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)

\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)