K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

28 tháng 4 2017

Đáp án B

Ta có A C = A B tan A C B ^ = a 3 ; B C = 2 a

⇒ S A B C = 1 2 A B . A C = 3 2 a 2

Góc giữa đường thẳng SC và mặt phẳng A B C  là  60 °

⇒ S C B ^ = 60 ° ; S B = S C . tan S C B ^ = 2 a 3 V S . A B C = 1 3 S B . S A B C = 1 2 2 a 3 3 2 a 2 = a 3

22 tháng 4 2019

27 tháng 1 2017

Đáp án B.

31 tháng 5 2016

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và SC = 2a√5 .

12 tháng 8 2017

Đáp án B.

Ta có S B ⊥ ( A B C ) ⇒ B C  là hình chiếu của SC trên mặt phẳng (ABC).

Suy ra   S C , ( A B C ) ^ = S C , B C ^ = S C B ^ = 60 0

Do Δ A B C  vuông tại A nên 

S B = B C . tan S C B ^ = 2 a . tan 60 0 = 2 a 3 .

⇒ B C = A B 2 + A C 2 = a 2 + a 3 2 = 2 a .

Do Δ S B C  vuông tại B nên 

S B = B C . tan S C B ^ = 2 a . tan 60 0 = 2 a 3 .

Vậy

V S . A B C = 1 3 S B . S Δ A B C = 1 6 S B . A B . A C = 1 6 .2. 3 a . a . a 3 = a 3  (đvtt).

3 tháng 8 2018

Đáp án A.

Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O

=> ABCD là hình vuông => AB//CD

=> d(AB;SC) = d(AB;(SCD))  = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của ABCD).

Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:

1 tháng 5 2017

17 tháng 11 2017

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật

=> AB//CD  nên

Xét tam giác vuông SAD có 

Chọn C. 

31 tháng 3 2016

x s K A N B H D C

Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC). 

\(\Rightarrow\widehat{SCH}=60^0\)

Gọi D là trung điểm cạnh AB. Ta có :

\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)

\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)

\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)

\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)

Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)

Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)

\(AH=\frac{2a}{3}\)\(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)

\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)

Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)

30 tháng 3 2016

Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
 Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF