K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

TK

Những hằng đẳng thức đáng nhớ chắc không còn xa lạ gì với các bạn . Hôm nay Kiến sẽ nói kỹ hơn về 7 hằng đẳng thức quan trọng : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương và cuối cùng là hiệu hai lập phương.

23 tháng 11 2021

undefined

14 tháng 8 2018

1.  (a + b)2 = a2 + 2ab + b2

2.  (a - b)2 = a2 - 2ab + b2

3.  (a + b)(a - b) = a2- b2

4.  (a + b)3 = a3 + 3a2b + 3ab2 + b3

5.  (a - b)3 = a3- 3a2b + 3ab2 - b3

6.  (a + b)(a2 - ab + b2) = a3 + b3

7.  (a - b)(a2 + ab + b2) = a3 - b3

14 tháng 8 2018

1.  (a + b)2 = a2 + 2ab + b2

2.  (a - b)2 = a2 - 2ab + b2

3.  (a + b)(a - b) = a2- b2

4.  (a + b)3 = a3 + 3a2b + 3ab2 + b3

5.  (a - b)3 = a3- 3a2b + 3ab2 - b3

6.  (a + b)(a2 - ab + b2) = a3 + b3

7.  (a - b)(a2 + ab + b2) = a3 - b3

7 tháng 11 2016

Tong sách trong vở lật ra là thấy 

Chúc bn học giỏi 

^_^ T_T

7 tháng 11 2016

1 binh phuong cua mot tong

2 binh phuong cua mot hieu

3 hieu 2 binh phuong

4 lap phuong cua mot tong

5 lap phuong cua mot hieu

6 tong 2 lap phuong

7 hieu hai lap phuong

20 tháng 5 2019

Các hàng đẳng thức lớp 7 đc học là ;

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)

Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu

21 tháng 5 2019

7 hằng đẳng thức đáng nhớ là :

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

~ Hok tốt ~

22 tháng 5 2017

1. (a + b)2 = a + 2ab + b2

2. (a - b)2 = a2 - 2ab +b2 

3. a2 + b2 = (a + b) - 2ab = (a - b) + 2ab

4. a - b = (a + b)(a - b)

chi nho 4 cai do thui bn co gi hoi mk co hinh anh ban hay dua mail cho mk nhe mk cho bn 13 hang dang thuc luon

xl em ko biết 

because em ms lớp 1

25 tháng 9 2016

1. \(\left(A+B\right)^2=A^2+2AB+B^2\)

2. \(\left(A-B\right)^2=A^2-2AB+B^2\)

3. \(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

4. \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

5. \(A^2+B^2=\left(A+B\right)\left(A^2-AB+B^2\right)\)

6. \(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

7. \(\left(A-B\right)^2=A^3-3A^2B+3AB^2-B^3\)

11 tháng 10 2016

Sai cái thứ 5 và 7 mà

14 tháng 11 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

14 tháng 11 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

10 tháng 10 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

  1. {\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}
  2. {\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}
  3. {\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}
  4. {\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}
  5. {\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
10 tháng 10 2018

cương khùng 

snvv 

10 tháng 12 2015

1) (a+b)^2=a^2+2ab+b^2

2) (a-b)^2=a^2-2ab+b^2

3) a^2-b^2=(a-b)(a+b)

4) (a+b)^3=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3=a^3-3a^2b+3ab^2-b^3

6) a^3+b^3=(a+b)(a^2-ab+b^2)

7) a^3-b^3=(a-b)(a^2+ab+b^2)

và còn nhiều hằng đẳng thức bổ sung khác nhưng mình chỉ nêu những cái cơ bản ra thôi