Cho hình chóp S.ABC có đáy là tam giác vuông tại A , A C = a , B C = 2 a . Hình chiếu của S trên ( ABC) là trung điểm H của BC. Cạnh bên SB tạo với đáy một góc 60 ° . Thể tích khối chóp S.ABC là
A. a 3 6
B. a 3 3 12
C. a 3 3 5
D. a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Gọi K là trung điểm AB
• H K ⊥ A B S H ⊥ A B ⇒ A B ⊥ ( S H K )
• H M ⊥ S K H M ⊥ A B ⇒ H M ⊥ ( S A B ) ⇒ d [ H ; ( S A B ) ] = H M
• H K = B C 2 = a 3 2 ; H B = A C 2 = a ;
• S H = S B − 2 H B 2 = a ; 1 H M 2 = 1 S H 2 + 1 H K 2 = 1 a 2 + 1 3 a 2 4 = 1 a 2 + 4 3 a 2 = 7 3 a 2
⇒ H M = a 21 7 ⇒ d [ H ; ( S A B ) ] = a 21 7 .
Đáp án B
Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.
=> IA = IB = IC = IH = IK
Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.
Suy ra bán kính R = 2 π a 3 3
Đáp án B
Gọi I, E, F lần lượt là trung điểm của AC, AB, HC.
IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.
Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB. Suy ra bán kính R = a 2 2
Đáp án B
Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.
⇒ IA=IB=IC=IH=IK
Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.
Suy ra bán kính R= a 2 2
Đáp án D
Ta có S H ⊥ A B C ⇒ S B ; A B C ^ = S B ; B C ^ = S B C ^ = 60 °
Tam giác SBH vuông tại H, có S H = tan 60 ° . B H = a 3
Và S A B C = 1 2 . A B . A C = a 2 3 2 .
Vậy thể tích khối chóp là V S . A B C D = 1 3 . S H . S A B C = 1 3 a 3 a 2 3 2 = a 3 2