cho hình bình hành ABCD .điểm E thuộc BC sao cho 3BE = BC, F là trung điểm của CD các tia AE AF lần lượt cắt BD tại I,K .tính diện tích tam giác AIK biết diện tích hình bình hành ABCD là 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
*AF cắt DC tại G.
-△APE có: AE//CG (ABCD là hình bình hành) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{AE}{CG}\) (hệ quả định lý Ta-let) mà \(AE=CF\left(gt\right)\) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{CF}{CG}\)
-△ADG có: CF//AD (ABCD là hình bình hành) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{CG}{DG}\Rightarrow\dfrac{AD}{DG}=\dfrac{CF}{CG}=\dfrac{AP}{PG}\)
*AH//DP (H thuộc DC)
△AHG có: AH//DP (gt) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{DH}{DG}=\dfrac{AD}{DG}\Rightarrow DH=AD\)
\(\Rightarrow\)△ADH cân tại D. \(\Rightarrow\widehat{HAD}=\widehat{ADH}=\widehat{ADP}=\widehat{CDP}\)
\(\Rightarrow\)DP là tia phân giác của góc ADC
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB
Bạn tham khảo ở đây nhé!
http://diendan.hocmai.vn/showthread.php?t=234169