Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 4 − 2 m x 2 + m 2 − 5 m có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 4 2 .
A. 0 < m < 2 2
B. m > 0
C. 0 < m < 2
D. 2 < m < 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có y ' = 4 x 3 − 4 m x = 4 x x 2 − m .
Hàm số có 3 điểm cực trị ⇔ y ' = 0 có 3 nghiệm phân biệt, suy ra m > 0 1 .
Suy ra tọa độ 3 điểm cực trị của đồ thị hàm số là
A 0 ; 0 , B m ; − m 2 , C − m ; − m 2 ⇒ A B ¯ = m ; − m 2 A C ¯ = − m ; − m 2 B C ¯ = 2 m ; 0 .
Suy ra tam giác ABC cân tại A.
Gọi H 0 ; − m 2 là trung điểm của B C ⇒ A H ¯ = 0 ; − m 2 ⇒ A H = m 2 .
Suy ra S A B C = 1 2 A H . B C = 1 2 m 2 2 m 2 = m 4 < 1 ⇔ − 1 < m < 1 2 .
Từ (1), (2) ⇒ 0 < m < 1.
+ Điều kiện để hàm số có 3 cực trị là m> 0
+ Các điểm cực trị tạo thành tam giác cân có đáy bằng 2√m, đường cao bằng m2. (như hình bên )
Ta được S ∆ A B C = 1 2 A C . B D = m . m 2 .
+ Để tam giác có diện tích nhỏ hơn 1 thì m . m 2 < 1 h a y 0 < m < 1
Chọn D.
Chọn C
Ta có
nên hàm số có 3 điểm cực trị khi m > 1.
Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:
Ta có:
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
Đáp án C
Có y ' = 4 x 3 − 4 m x ; y ' = 0 ⇔ x = 0 x = m x = − m (ta xét với m > 0 để phương trình có 3 nghiệm)
Khi đó 3 điểm cực trị của hàm số là A 0 ; m 2 − 5 m ; B m ; − 5 m ; C − m ; 5 m .
Khi đó ABC là tam giác cân có đường cao A H = m 2 ; B C = 2 m
S A B C = 1 2 A H . B C = m 2 m < 4 2 ⇔ 0 < m < 2