K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

Đáp án C

4 − x + 4 + x 3 − 6 16 − x 2 + 2 m + 1 = 0 (*) ĐK  x ∈ − 4 ; 4

Đặt  S = 4 − x + 4 + x , S ∈ 2 2 ; 4 P = 4 − x . 4 + x = 16 − x 2 , P ∈ 0 ; 4

Khi đó phương trình đã cho trở thành

S 3 − 6 P + 2 m + 1 = 0 S 2 = 2 P + 8 ⇔ P = S 2 − 8 2 S 3 − 6 S 2 − 8 2 + 2 m + 1 = 0 ⇔ P = S 2 − 8 2 ( 1 ) S 3 − 3 S 2 + 24 + 2 m + 1 = 0 ( 2 )

Để phương trình (*) có nghiệm

 hệ phương trình trên có nghiệm S ≥ 2 2 , P ≥ 0  và  S 2 > 4 P

phương trình (2) có nghiệm  S ∈ 2 2 ; 4

f ( S ) = S 3 − 3 S 2 + 25, S ∈ 2 2 ; 4 f ' ( S ) = 3 S 2 − 6 S f ' ( S ) = 0 ⇔ S = 0 ( L ) S = 2 ( L )

Bảng biến thiên 

Câu 1: D

 

4 tháng 12 2021

Bạn ơi câu 2 đâu

10 tháng 7 2016

can tui giup k

30 tháng 7 2021

undefined

undefined

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<