Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và tam giác ABC. Mệnh đề nào dưới đây đúng?
A. GE cắt CD.
B. GE cắt AD.
C. GE, CD chéo nhau.
D. GE // CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Gọi M là trung điểm của AB .
Có G là trọng tâm tam giác ABC nên G M D M = 1 3
Và E là trọng tâm tam giác ABC nên E M C M = 1 3
Áp dụng định lý Ta – lét có : G E // D C .
a: Gọi O là giao điểm của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABD có
AO,DM là các đường trung tuyến
AO cắt DM tại G
Do đó: G là trọng tâm của ΔABD
b: Xét ΔABD có
AO là đường trung tuyến
G là trọng tâm
Do đó: \(AG=\dfrac{2}{3}\cdot AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)
Ta có: CG+GA=CA
=>\(GA+\dfrac{1}{3}AC=AC\)
=>\(GA=\dfrac{2}{3}AC\)
\(\dfrac{AG}{GA}=\dfrac{\dfrac{1}{3}AC}{\dfrac{2}{3}AC}=\dfrac{1}{3}:\dfrac{2}{3}=\dfrac{1}{2}\)
=>GA=2AG
Đáp án B
Gọi M là trung điểm của AB
Tam giác ABC có trọng tâm I suy ra M I M C = 1 3
Tam giác ABC có trọng tâm J suy ra M J M D = 1 3
Khi đó M I M C = M J M D ⇒ I J / / C D (định lí Talet)
Đáp án là D