K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Đáp án D

Dễ thấy f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {x - 2} \right)

Do f (x) đổi dấu từ âm sang dương khi qua điểm x = 2 nên  f (x) đạt cực trị tại x =2 

Hàm số f (x)  nghịch biến trên  do f'\left( x \right) 0\left( {\forall x 2} \right)

Đặt t = 2 - {x^2} \Rightarrow g\left( x \right) = f\left( t \right) = \Rightarrow g'\left( x \right) = f'\left( t \right).t'\left( x \right) = f'\left( {2 - {x^2}} \right)\left( { - 2x} \right)  = {\left( {2 - {x^2} + 1} \right)^2}\left( {2 - {x^2} - 2} \right)\left( { - 2x} \right) = {\left( {3 - {x^2}} \right)^2}.3{x^2} \Rightarrow g\left( x \right)

 đồng biến trên \left( {0; + \infty } \right)

 

31 tháng 12 2018

Đáp án là C

1 tháng 5 2019

Chọn C.

Ta có f'(x)= 0 

(Trong đó -2 < a < 0 < b < c < 2)

Ta có bảng xét dấuDựa vào bảng xét dấu ta thấy hàm số y = f(x) có 3 cực trị.

3 tháng 1 2019

Ta có 

Suy ra số nghiệm của phương trình g'(x) = 0 chính là số giao điểm giữa đồ thị của hàm số f'(x) và parapol 

Dựa vào đồ thị ta suy ra 

Bảng biến thiên

Dựa vào bảng biến thiên ta thấy g(x) đạt cực đại tại x = 1

Chọn C.

20 tháng 1 2018

Đáp án là D

7 tháng 3 2018

B

Từ đồ thị của hàm số f"(x) ta có bảng biến

thiên của hàm số f'(x) như sau:

28 tháng 2 2019

20 tháng 7 2017

Chọn đáp án C.

23 tháng 4 2017

Chọn A

Ta có: g(x) = f(x-2017) - 2018x + 2019.

Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).

Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.

18 tháng 3 2017

Đáp án B