K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

moi hoc lop 6

17 tháng 2 2019

Kẻ DI // BK (I thuộc AC)

\(BD=\frac{3}{4}BC\Rightarrow\frac{BD}{BC}=\frac{3}{4}\)

\(\hept{\begin{cases}AE+ED=AD\\AE=\frac{1}{3}AD\end{cases}\Rightarrow}\hept{\begin{cases}AE=\frac{1}{3}AD\\ED=\frac{2}{3}AD\end{cases}\Rightarrow}\frac{AE}{ED}=\frac{1}{2}\)

Ta có: \(\frac{AK}{CK}=\frac{AK}{KI}.\frac{KI}{KC}=\frac{AE}{ED}.\frac{BD}{BC}=\frac{1}{2}.\frac{3}{4}=\frac{3}{8}\)

18 tháng 2 2019

Trả lời............

Kẻ đường thẳng DI song song với BK (I thuộc AC)

BD = 3/4 BC suy ra BD/BC=3/4

AE + ED=AD           (1)

AE=1/3 AD 

Suy ra AE=1/3 AD ; ED = 2/3 AD suy ra AE/ED = 1/2        (2)

Từ (1) và (2) ta suy ra được :

AK/CK = AK/KI . KI/KC = AE/ED . BD/BC = 1/2 . 3/4=3/8

..............học tốt............

22 tháng 2 2022

a, Xét tam giác ABE và tam giác ACD

AB = AC 

AE = AD 

^A _ chung 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BE = CD ( 2 cạnh tương ứng ) 

=> ^ABE = ^ACD ( 2 góc tương ứng ) 

b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC 

Xét tam giác KBD và tam giác KCE có 

^BKD = ^CKE ( đối đỉnh ) 

^KBD = ^KCE (cmt) 

BD = CE (cmt) 

Vậy tam giác KBD = tam giác KCE (g.c.g) 

c, Xét tam giác ABH và tam giác ACH có 

^B = ^C 

AH _ chung 

AB = AC 

Vậy tam giác ABH = tam giác ACH ( c.g.c ) 

=> ^BAH = ^CAH ( 2 góc tương ứng ) 

=> AH là đường phân giác 

hay AK là đường phân giác 

d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao 

hay AK vuông BC 

e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)

23 tháng 2 2022

em học lớp 7 ạ

 

7 tháng 3 2022

a) Xét \(\Delta AEB\) và \(\Delta ADC:\)

AE = AD (gt).

\(\widehat{A}chung.\)

AB = AC \((\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)

\(\Rightarrow BE=CD.\)

b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\) 

\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)

Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)

Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)

\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)

Xét \(\Delta KBD\) và \(\Delta KCE:\)

\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)

BD = CE (cmt).

\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)

\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)

c) Xét \(\Delta AKB\) và \(\Delta AKC:\)

\(AKchung.\)

AB = AC (\(\Delta ABC\) cân tại A).

KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)

\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)

\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)

Xét \(\Delta ABC\) cân tại A:

AK là phân giác của \(\widehat{A}\left(cmt\right).\)

\(\Rightarrow\) AK là đường cao.

\(\Rightarrow AK\perp BC.\)

14 tháng 3 2022

cảm ơn bạn nhiều