cho tam giác ABC có 3 góc nhọn kẻ AH vuông góc với BC tại H trên tia đối của tia HAlay điểm D sao cho HA=HD c/m BC và CB lần lượt là các tia phân giác của các góc ABD và ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AHB\) và \(\Delta DHB\):
-AH=DH (giả thiết)
- Góc AHB = góc DHB = 90 o
-Chung cạnh HB
\(\Rightarrow\Delta AHB=\Delta DHB\)(c.g.c)
\(\Rightarrow\)Góc ABH = góc DBH ( 2 góc tương ứng)
Do đó BH hay BC là phân giác của góc ABD
Xét \(\Delta AHC\) và \(\Delta DHC\):
- AH= DH ( giả thiết)
- Góc AHC = góc DHC = 90 o
-Chung cạnh HC
\(\Rightarrow\Delta AHC=\Delta DHC\)(c.g.c)
\(\Rightarrow\) Góc ACH = góc DCH ( 2 góc tương ứng)
Do đó CH hay CB là tia phân giác của góc ACD.
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
b: Ta có: ΔABH=ΔDBH
nên BA=BD
Ta có: ΔACH=ΔDCH
nên CA=CD
c: Ta có: ΔAHC vuông tại H
nên \(\widehat{HAC}+\widehat{HCA}=90^0\)
\(\Leftrightarrow\widehat{CAD}=45^0\)
hay \(\widehat{ADC}=45^0\)
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a). Xét tam giác ABH vuông tại H và tam giác DBH vuông tại H có:
AH=DH (GT)
BH là cạnh chung.
=> Tam giác ABH=tam giác DBH (hai cạnh góc vuông).
=> Góc ABH=góc DBH
=> BC là phân giác của góc ABD
Xét tam giác CAH vuông tại H và tam giác CDH vuông tại H có:
AH=DH (GT)
CH là cạnh chung.
=> Tam giác CAH=tam giác CDH (2 cạnh góc vuông)
=> Góc ACH=góc DCH
=> CB là phân giác của góc ACD
b). Vì tam giác ABH=tam giác DBH => BA=BD
Vì tam giác CAH=tam giác CDH => CA=CD
Bạn tự vẽ hình nha
a.
Xét tam giác ABH và tam giác DBH có:
AH = DH (gt)
AHB = DHB ( = 900)
HB là cạnh chung
=> Tam giác ABH = Tam giác DBH (c.g.c)
=> ABH = DBH (2 góc tương ứng)
=> BH là tia phân giác của ABD
Xét tam giác ACH và tam giác DCH có:
AH = DH (gt)
AHC = DHC ( = 900)
HC là cạnh chung
=> Tam giác ACH = Tam giác DCH (c.g.c)
=> ACH = DCH (2 góc tương ứng)
=> CH là tia phân giác của ACD
b.
CA = CD (Tam giác ACH = Tam giác DCH)
BD = BA (Tam giác ABH = Tam giác DBH)
Bn tự vẽ hình nha:GT:tam giác ABC,góc A<90 độ,góc B <90 độ,góc C <90 độ,AH vuông góc với BC,HA=AD
KL:viết lại câu hỏi
a)Xét tam giác ABH và tam giác DBH có:
HA=HD(gt)
Góc AHB= góc BHD=90 độ
AD chung
=>tam giác ABH= tam giác DBH( c-g-c)
=>góc ABH= góc HBD
=> BC là tia phân giác của góc ABD
Xét tam giác ACH và tam giác DCH có:
AD chung
Góc AHC= góc CHD=90 độ
HA=HD(gt)
=>tam giác ACH= tam giác HCD
=>góc ACH= góc HCD
=>CB là tia phân giác của góc ACD
b)Xét tam giác CAH và tam giác CDH có:
AH=HD(gt)
góc AHC=góc CHD=90 độ
HC chung
=>tam giác CAH = tam giác CDH (c-g-c)
=>CA=CD
Xét tam giác BDH và tam giác BAH có:
BH chung
góc DHB=góc AHB=90 độ
HA=HD(gt)
=>tam giác BDH = tam giác BAH (c-g-c)
MK LÀM XONG RỒI ĐÓ.KẾT BN VS MK NHA!