tính tổng sau :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right)\)
=\(\frac{11}{45}\)
=1/2.(1/1*2-1/2*3+1/2*3-1/3*4+...+1/8*9-1/9*10)
=1/2.(1/1*2-1/9*10)
=1/2.44/90
=22/90
nha
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
\(A=\frac{22}{45}:2=\frac{11}{45}\)
thay A vào ta được
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
=>(2/1.2.3+2/2.3.4+....+2/8.9.10).x=22/45
=>(1/1.2-1/2.3+1/2.3-1/3.4+....+1/8.9-1/9.10).x=22/45
=>(1/1.2-1/9.10).x=22/45
=>22/45.x=44/45
=>x=2
4+2^2+2^3+....+2^20=2^n
=>2^2+2^2+2^3+....+2^20=2^n
đặt 2^2+2^3+....+2^20
=>2A-A=2^21-2^2
khi đó A=2^2+2^21-2^2=2^21=2^n
=>n=21
Đặt B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{8.9.10}\)
=> 2B = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{8.9.10}\)
=> 2B = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\)
=> 2B = \(\frac{1}{1.2}-\frac{1}{9.10}\)
2B = \(\frac{22}{45}\)
B = \(\frac{22}{45}:2\)
=> B = \(\frac{11}{45}\)
Ta có : \(\frac{11}{45}.x=\frac{22}{45}\)
=> x = \(\frac{22}{45}:\frac{11}{45}\)
=> x = \(\frac{2}{1}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)x=\frac{22}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{44}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{44}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{44}{45}\)
\(\Rightarrow\frac{22}{45}.x=\frac{44}{45}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}\\ =\frac{306}{1225}\)(mà đây là toán 6 mà :V)