Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = -1/2, x 2 = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số 1 - 2 và 1 + 2 là nghiệm của phương trình :
[x – (1 - 2 )][x – (1 + 2 )] = 0
⇔ x 2 – (1 + 2 )x – (1 - 2 )x + (1 - 2 )(1 + 2 ) = 0
⇔ x 2 – 2x – 1 = 0
Hai số 2 và 5 là nghiệm của phương trình :
(x – 2)(x – 5) = 0 ⇔ x 2 – 7x + 10 = 0
Hai số 0,1 và 0,2 là nghiệm của phương trình :
(x – 0,1)(x – 0,2) = 0 ⇔ x 2 – 0,3x + 0,02 = 0
a) \({x^2} + x - 6 \le 0\) là một bất phương trình bậc hai một ẩn
Vì \({2^2} + 2 - 6 = 0\) nên \(x = 2\) là nghiệm của bất phương trình trên
b) \(x + 2 > 0\) không là bất phương trình bậc hai một ẩn
c) \( - 6{x^2} - 7x + 5 > 0\) là một bất phương trình bậc hai một ẩn
Vì \( - {6.2^2} - 7.2 + 5 = - 33 < 0\) nên \(x = 2\) không là nghiệm của bất phương trình trên
Áp dụng định lí viet cho phương trình: x2 - 5x - 3 = 0
Ta có: \(x_1+x_2=5;x_1.x_2=-3\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2+2.3=31\)
Xét:
\(\left(2x_1^2-1\right)+\left(2x_2^2-1\right)=2\left(x_1^2+x_2^2\right)-2=2.31-2=60\)
\(\left(2x_1^2-1\right).\left(2x_2^2-1\right)=4x_1^2x_2^2-2\left(x_1^2+x_2^2\right)+1=4.\left(-3\right)^2-2.31+1=-25\)
=> Phương trình bậc 2 cần tìm là:
x2 - 60 x - 25 = 0
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
1:
Δ=(2m-4)^2-4(m^2-3)
=4m^2-16m+16-4m^2+12=-16m+28
Để PT có hai nghiệm phân biệt thì -16m+28>0
=>-16m>-28
=>m<7/4
2: x1^2+x2^2=22
=>(x1+x2)^2-2x1x2=22
=>(2m-4)^2-2(m^2-3)=22
=>4m^2-16m+16-2m^2+6=22
=>2m^2-16m+22=22
=>2m^2-16m=0
=>m=0(nhận) hoặc m=8(loại)
3: A=x1^2+x2^2+2021
=2m^2-16m+2043
=2(m^2-8m+16)+2011
=2(m-4)^2+2011>=2011
Dấu = xảy ra khi m=4
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Hai số -1/2 và 3 là nghiệm của phương trình :
(x + 1/2 )(x – 3) = 0 ⇔ 2 x 2 – 5x – 3 = 0