Tìm n ∈ ℤ sao cho:
n + 8 là ước số của -14
Đáp số n ∈ { }
Dùng dấu chấm phẩy (;) hoặc dấu phảy (,) để phân cách các số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 \(\in\) Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 $\in$∈ Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Ta có: c - 8 là ước số của 8c - 57
=> 8c - 57 chia hết c - 8
<=> (8c - 48) - 9 chia hết c - 8
<=> 8.(c - 6) - 9 chia hết c - 8
=> 9 chia hết c - 8
=> c - 8 \(\in\)Ư(9) = {-1;1;-3;3;-9;9}
=> c = {7;9;5;13;-1;17}
Ta có: a - 6 là ước số của 5a - 49
=> 5a - 49 chia hết cho a - 6
Mà 5a - 30 chia hết cho a - 6
=> 19 chia hết cho a - 6
=> a - 6 = { -19 ; -1 ; 1 ; 19 }
=> a = { -13 ; 5 ; 7 ; 25 }
bạn ấn vào đúng 0 sẽ ra kết quả mình giải rồi dễ lắm
2a + 1 chia hết cho a - 7
2a + 1 = 2a - 14 + 15
= 2 (a - 7) + 15
Vì 2 (a - 7) chia hết cho a - 7 => 15 chia hết cho a - 7
a - 7 ∈ Ư(15) = {1;3;5;15}
a ∈ {8;10;12;22}
c + 3 là ước số của -6
⇒ -6 ⋮ (c + 3)
⇔ (c + 3) ∈ Ư(-6).
Ta có: Ư(-6) = { 1; -1; 2; -2; 3; -3; 6; -6 }
Vậy: (c + 3) ∈ { 1; -1; 2; -2; 3; -3; 6; -6 }
⇔ c ∈ { -2; -4; -1; -5; 0; -6; 3; -9 }
n + 8 thuộc {-14; -7; -2; -1; 1; 2; 7; 14}
=> n thuộc {-22; -15; -10; -9; -7; -6; -1; 6}
n+8 E Ư(-14)
=>n+8 E {-14;-7;-2;-1;1;2;7;14}
=>n E {-22;-15;-10;-9;-7;-6;-1;6}