K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

NV
24 tháng 8 2021

\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)

\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

NV
2 tháng 3 2021

Đặt \(\left(2\sqrt{a}-5;2\sqrt{b}-5;2\sqrt{c}-5\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\a=\left(\dfrac{x+5}{2}\right)^2\\b=\left(\dfrac{y+5}{2}\right)^2\\c=\left(\dfrac{z+5}{2}\right)^2\end{matrix}\right.\)

\(Q=\dfrac{\left(x+5\right)^2}{4y}+\dfrac{\left(y+5\right)^2}{4z}+\dfrac{\left(z+5\right)^2}{4x}\ge\dfrac{\left(x+y+z+15\right)^2}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{\left(x+y+z\right)^2+30\left(x+y+z\right)+225}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{x+y+z}{4}+\dfrac{225}{4\left(x+y+z\right)}+\dfrac{15}{2}\ge2\sqrt{\dfrac{225\left(x+y+z\right)}{16\left(x+y+z\right)}}+\dfrac{15}{2}=15\)

Dấu "=" xảy ra khi \(a=b=c=25\)

2 tháng 3 2021

Áp dụng bđt hoán vị cho hai bộ số đơn điệu ngược chiều \(\left(a,b,c\right);\left(2\sqrt{a}-5,2\sqrt{b}-5,2\sqrt{c}-5\right)\)\(Q\ge\dfrac{a}{2\sqrt{a}-5}+\dfrac{b}{2\sqrt{b}-5}+\dfrac{c}{2\sqrt{c}-5}\).

Mặt khác ta có \(\dfrac{a}{2\sqrt{a}-5}-5=\dfrac{\left(\sqrt{a}-5\right)^2}{2\sqrt{a}-5}\ge0\).

Do đó \(Q\ge5+5+5=15\).

Dấu bằng xảy ra khi a = b = c = 25.

17 tháng 5 2021

1)Từ đề bài:

`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`

`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`

`<=>a=b=c-2`

17 tháng 5 2021

`ab+bc+ca=abc`

`<=>1/a+1/b+1/c=1`

`<=>(1/a+1/b+1/c)^2=1`

`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`

`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`

`a+b+c=0`

Chia 2 vế cho `abc`

`=>1/(ab)+1/(bc)+1/(ca)=0`

`=>2/(ab)+2/(bc)+2/(ca)=0`

`=>1/a^2+1/b^2+1/c^2=1-0=1`

NV
20 tháng 12 2020

Chắc là bạn ghi nhầm mẫu số cuối cùng

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)

Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)

Cộng vế với vế:

\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)

\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

NV
20 tháng 5 2021

\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)

\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)

Cộng vế với vế: 

\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{512}{27}\)

Dấu "=" xảy ra khi \(a=b=4\)