Phân tích các đa thức sau thành nhân tử:
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
b) \(z^4+2010x^2+2009x+2010\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2010x2+2009x+2010
=x4-x+2010x2+2010x+2010
=x.(x3-1)+2010.(x2+x+1)
=x.(x-1)(x2+x+1)+2010.(x2+x+1)
=(x2+x+1)(x2-x+2010)
(x+y+z)3-x3-y3-z3=(x+y+z-x)[(x+y+z)2+(x+y+z).x+x2]-(y+z)(y2-yz+z2)
=(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+zx+x2)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx-y2+yz-z2)
=(y+z)(3x2+3yz+3xy+3zx)
=3.(y+z)(x2+xy+yz+zx)
=3.(y+z)[x.(x+y)+z.(x+y)
=3.(y+z)(x+y)(x+z)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
Do câu d mình ko biết làm bởi v mình không làm được
`a, P = 2x(3 - x^2)`
`b, Q = 5x^2(x-3y)`
`c, R = xy(3x^2y^2 - 6y^2z + 1)`
a) \(P=6x-2x^3\)
\(P=2x\left(3+x^2\right)\)
b) \(Q=5x^3-15x^2y\)
\(Q=5x^2\left(x-3y\right)\)
c) \(R=3x^3y^3-6xy^3z+xy\)
\(R=xy\left(3x^2y^2-6y^2z+1\right)\)
a.\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)^3+z^3\right]-a^3-b^3-c^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b.\(x^4+2010x^2+2009x+2010\)
\(=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
sửa đề:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
giải:
\(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b,W = \(x^4+x^2+1+2009x^2+2009x+2009\)
\(=\left(x^4+2x^2+1\right)-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)