K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

a) (x  + y + z)3 - x3 - y3 - z3

= (x + y + z)3 - z3 - (x3 + y3

= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)

= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)

= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)

= (x + y)(3z2 + 3xy + 5yz + 4zx) 

b) Sửa đề x4 + 2010x2 + 2009x + 2010

= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)

= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)

= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 2010)

14 tháng 10 2015

x4+2010x2+2009x+2010

=x4-x+2010x2+2010x+2010

=x.(x3-1)+2010.(x2+x+1)

=x.(x-1)(x2+x+1)+2010.(x2+x+1)

=(x2+x+1)(x2-x+2010)

14 tháng 10 2015

(x+y+z)3-x3-y3-z3=(x+y+z-x)[(x+y+z)2+(x+y+z).x+x2]-(y+z)(y2-yz+z2)

=(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+zx+x2)-(y+z)(y2-yz+z2)

=(y+z)(3x2+y2+z2+3xy+2yz+3zx)-(y+z)(y2-yz+z2)

=(y+z)(3x2+y2+z2+3xy+2yz+3zx-y2+yz-z2)

=(y+z)(3x2+3yz+3xy+3zx)

=3.(y+z)(x2+xy+yz+zx)

=3.(y+z)[x.(x+y)+z.(x+y)

=3.(y+z)(x+y)(x+z)

`a, 4a^2 + 4a + 1 = (2a+1)^2`

`b, -3x^2 + 6xy - 3y^2`

` = -3(x-y)^2`

`c, (x+y)^2 - 2(x+y)z + z^2`

`= (x+y-z)^2`

18 tháng 10 2021

Do câu d mình ko biết làm bởi v mình không làm được

undefined

 

`a, P = 2x(3 - x^2)`

`b, Q = 5x^2(x-3y)`

`c, R = xy(3x^2y^2 - 6y^2z + 1)`

22 tháng 7 2023

a) \(P=6x-2x^3\)

\(P=2x\left(3+x^2\right)\)

b) \(Q=5x^3-15x^2y\)

\(Q=5x^2\left(x-3y\right)\)

c) \(R=3x^3y^3-6xy^3z+xy\)

\(R=xy\left(3x^2y^2-6y^2z+1\right)\)

10 tháng 3 2017

a.\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3+z^3\right]-a^3-b^3-c^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b.\(x^4+2010x^2+2009x+2010\)

\(=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)

=\(x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2010\right)\)

11 tháng 3 2017

câu a HẠNG THỨ 2 Ở ĐÂU RA?

11 tháng 6 2017

sửa đề:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

giải:

\(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

11 tháng 6 2017

b,W = \(x^4+x^2+1+2009x^2+2009x+2009\)

\(=\left(x^4+2x^2+1\right)-x^2+2009\left(x^2+x+1\right)\)

\(=\left(x^2+1\right)^2-x^2+2009\left(x^2+x+1\right)\)

\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)