Giúp mình câu 1 phần 3 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
\(TanB=\dfrac{AC}{AB}\Rightarrow Tan30^o=\dfrac{AC}{4,5}\Rightarrow AC=Tan30^o.4,5=\dfrac{3\sqrt{3}}{2}\left(m\right)\)
\(CosB=\dfrac{AB}{BC}\Rightarrow Cos30^o=\dfrac{4,5}{BC}\Rightarrow BC=Cos30^o.4,5=\dfrac{9\sqrt{3}}{4}\)
Chiều cao ban đầu của cây tre là: \(\dfrac{3\sqrt{3}}{2}+\dfrac{9\sqrt{3}}{4}=\dfrac{15\sqrt{3}}{4}\approx6,5\left(m\right)\)
câu 2 phần 2:
\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm
(x,y)=(2;1)
caau3 phần 2:
\(x^2-2x+m-1=0\)(1)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)
theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)
có: \(x1^4\)\(-x1^3=x2^4-x2^3\)
\(< =>x1^4-x2^4-x1^3+x2^3=0\)
\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)
\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)
\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)
\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)
<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)
\(< =>\left(x1-x2\right)\left(5-m\right)=0\)
\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)
thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)
thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)
vậy m=2 thì....
\(\frac{3}{4}-\frac{x}{2}-1\frac{1}{2}=\)
\(\frac{3}{4}-\frac{x}{2}-\frac{3}{2}=0\)
\(\frac{3}{4}-\frac{x}{2}=0+\frac{3}{2}\)
\(\frac{3}{4}-\frac{x}{2}=\frac{3}{2}\)
\(\frac{x}{2}=\frac{3}{4}-\frac{3}{2}\)
\(\frac{x}{2}=-\frac{3}{4}\)
\(x:2=-\frac{3}{4}\)
\(x=-\frac{3}{4}.2\)
\(x=-\frac{3}{2}\)
=> x = -3
Câu 3:
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-4}{-3+5}=\dfrac{-7}{2}\)
b: \(B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x+12}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)
c: \(M=A\cdot B=\dfrac{x-4}{x+5}\cdot\dfrac{3}{x-4}=\dfrac{3}{x+5}\)
Để M nguyên thì \(x+5\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-6;-2;-8\right\}\)
Gọi a (km/h) và b (km/h) lần lượt là vận tốc của người thứ nhất và vận tốc của người thứ hai. ĐK: b>a>0.
Quãng đường người thứ nhất đi được trong 1h30'=1,5h là 1,5a km.
Quãng đường người thứ hai đi được trong 1h15'=1,25h là 1,25b km.
Ta có: 1,5a+1,25b=90 (1).
Vận tốc của người thứ hai hơn vận tốc người thứ nhất 6 km/h, ta có b-a=6 (2).
Giải hệ phương trình gồm (1) và (2), ta suy ra a=30 (nhận) và b=36 (nhận).
Vậy vận tốc của người thứ nhất là 30 km/h, vận tốc của người thứ hai là 36 km/h.
gfvfvfvfvfvfvfv555