Cho △ABC. Gọi I, K là trung điểm của AB và AC. Lấy các điểm E và F sao cho I l à trung điểm của CF và K là trung điểm của BE. Chứng Minh AF=AE và ba điểm F,A,E thẳng hàng.
Giúp mình với mọi người!!!! T^T ❤❤❤❤❤❤❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
Xét ΔADF và ΔEDC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=CE
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
a)nối E với F
+)Xét tứ giác AEFB có:
AE=BF(gt)
AE//BF(BC//xy)
Suy ra :tứ giác AEFB là hình bình hành(DHNB)
Suy ra:EF=AB;EF//AB
b)Xét tam giác BKF và tam giác ADE có:
góc BKF=ADE=90 (FK vuông góc BE;BD vuông góc AC)
BF=AE(gt)
KBF=AED(AE//BF)
Suy ra :tam giác BKF=tam giác ADE(ch-gn)
suy ra FK=AD
Mk mỏi rồi .Bạn tự nghĩ tiếp đi nha.
nhớ kết bạn với mk
Hình tự vẽ nhé bạn:vv
a)+ Xét \(\Delta AKE\) và \(\Delta CKB\):
AK=CK(gt)
KE=BE (gt)
\(\widehat{AKE}=\widehat{CKB}\) (2 góc đối đỉnh)
=> \(\Delta AKE=\Delta CKB\left(c-g-c\right)\)
=> AE=CB(2 cạnh tương ứng) (1)
+ Xét \(\Delta AFI\) và \(\Delta BCI:\)
AI=BI(gt)
FI=CI(gt)
\(\widehat{AIF}=\widehat{BIC}\) (2 góc đối đỉnh)
=> \(\Delta AFI=\Delta BCI\left(c-g-c\right)\)
=> AF=BC (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra: AF=AE
Ta có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
Mà \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{IAF}\left(\Delta IAF=\Delta IBC\right)\\\widehat{ACB}=\widehat{KAE}\left(\Delta KAE=\Delta KCB\right)\end{matrix}\right.\)
=> \(\widehat{IAF}+\widehat{BAC}+\widehat{KAE}=180^o\)
=> E, A, F thằng hàng.
=> Đpcm
thank kiu!! =))