K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Xét ΔAOM vuông tại A có \(AM^2+AO^2=OM^2\)

=>\(AM^2=5^2-3^2=16\)

=>\(AM=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOM vuông tại A có \(tanAMO=\dfrac{AO}{AM}\)

=>\(tanAMO=\dfrac{3}{4}\)

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là trung trực của AB

=>MO\(\perp\)AB tại I và I là trung điểm của AB

c: Xét (O) có

ΔBDC nội tiếp

BC là đườngkính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CM tại D

Xét ΔCBM vuông tại B có BD là đường cao

nên \(MD\cdot MC=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MD\cdot MC=MI\cdot MO\)

=>\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

Xét ΔMDO và ΔMIC có

\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

\(\widehat{DMO}\) chung

Do đó: ΔMDO đồng dạng với ΔMIC

a: Xét ΔOAS vuông tại A có 

\(OS^2=OA^2+AS^2\)

hay AS=4(cm)

Xét ΔOAS vuông tại A có 

\(\sin SOA=\dfrac{AS}{OS}=\dfrac{4}{5}\)

hay \(\widehat{SOA}=53^0\)

b: Xét ΔOAB có OA=OB

nên ΔOAB cân tại O

mà OI là đường cao

nên OI là đường phân giác

hay OS là tia phân giác của góc AOB

Xét ΔAOS và ΔBOS có

OA=OB

\(\widehat{AOS}=\widehat{BOS}\)

OS chung

Do đó: ΔAOS=ΔBOS
Suy ra: \(\widehat{OAS}=\widehat{OBS}=90^0\)

hay SB là tiếp tuyến của (O)

a: \(AB=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2

=>góc OAB=30 độ

=>góc BAC=60 độ

=>ΔBAC đều

a,b: Xét (O) có

AE,AH là tiếp tuyến

=>AE=AH và OA là phân giác của góc EOH

AE=AH

OE=OH

Do đó:OA là trung trực của EH

=>OA vuông góc EH tại M và M là trung điểm của EH

ΔEMO vuông tại M

=>MO^2+ME^2=OE^2

=>ME^2=5^2-3^2=16

=>ME=4(cm)

=>MH=2*4=8cm

Xét ΔOEA vuông tại E có EM là đường cao

nên OE^2=OM*OA

=>OA=5^2/3=25/3(cm)

c: ΔOEK cân tại O

mà OB là trung tuyến

nên OB vuông góc KE tại I và OB là phân giác của góc KOE

Xét ΔOKB và ΔOEB có

OK=OE

góc KOB=góc EOB

OB chung

Do đó: ΔOKB=ΔOEB

=>góc OBK=góc OEB=90 độ

=>BK là tiếp tuyến của (O)

d: Xét (O) có

ΔKEH nội tiếp

KH là đường kính

Do đó: ΔKEH vuông tại E

Xét tứ giác OIEM có

góc IEM=góc EIO=góc IOM=90 độ

=>OIEM là hình chữ nhật

15 tháng 1 2022

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450vv