K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2(1)

hay BMNC là hình thang

b: Xét ΔGBC có 

E là trung điểm của GB

F là trung điểm của GC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(2)

Từ (1) và (2) suy ra MN//FE và MN=FE

hay MNEF là hình bình hành

c: Xét ΔABC có 

BN,CM là các đường trung tuyến

BN cắt CM tại G

Do đó: G là trọng tâm của ΔABC

mà AG cắt BC tại H

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC

M là trung điểm của BA

Do đó: HM là đường trung bình

=>HM//AC và HM=AC/2

=>HM=AN và HM//AN

=>AMHN là hình bình hành

mà \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

22 tháng 11 2016

A B C H M N F E G I K

22 tháng 11 2016

I dont know bitch

14 tháng 12 2022

a: Xét ΔCAB có CE/CA=CD/CB

nên ED//AB và ED=AB/2

=>AEDB là hình thang

mà góc EAB=90 độ

nênAEDB là hình thang vuông

b: Xét tứ giác ABKC có

D là trung điểm chung của AK và BC

góc BAC=90 độ

Do đó: ABKC là hình chữ nhật

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến ứng với cạnh huyền BC

nên \(AP=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

b: Xét ΔABC có

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMPN có 

PN//AM

PN=AM

Do đó: AMPN là hình bình hành

mà \(\widehat{NAM}=90^0\)

nên AMPN là hình chữ nhật

c: Xét tứ giác APCE có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo PE

Do đó: APCE là hình bình hành

mà PE\(\perp\)AC

nên APCE là hình thoi

4 tháng 1 2020

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

23 tháng 12 2022

SDGB là S tam giác DGB pk ạ ?