Cho hình vuông ABCD. Trên cạnh BC lấy điểm E bất kỳ, trên tia đối của tia CD lấy điểm F sao cho CF=CE a. CM: DE=BF b. BD cắt EF tại K, DE cắt BF tại H. CM: FK, DH là các đường cao của tam giác DBF c. Gọi M là trung điểm của EF, O là giao điểm của AC và BD. CM: OM//AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
=>
Xét t/g DEC và t/g BFC có
EC = FC (GT)
DC = BC (do ABCD là hình vuông)
=> t/g DEC = t/g BFC (c.g.c)
=> DE = BF (2 cạnh t/ứ(
b/ Xét t/g BEH và t/g DEC có
(đối đỉnh)
(do t/g BFC = t/g DEC)
(g.g)
=>
Ta có : FK // AC vì cùng vuông góc với BD nên góc FKH = goc CAK
Mà goc FAH + goc HKB = 90 độ , góc CAH + góc AKO mà Ở , K , B thẳng hàng nên 2 góc kia đối đỉnh , dẫn đến AKH thẳng hàng
d, ta có FK//AC vì cùng vuông góc với BD nên góc FKH = góc CAK
Mà góc FAH + góc HKB = 90 độ, góc CAH + góc AKO = 90 độ nên góc góc HKB = góc AKO mà O, K, B thẳng hàng nên 2 góc kia đối đỉnh, dẫn đến A, K, H thẳng hàng
a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED(ch-gn)
Suy ra: BA=BE(hai cạnh tương ứng) và DA=DE(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)
=> \(\widehat{ECF}=90^o\)
Xét t/g DEC và t/g BFC có
EC = FC (GT)
\(\widehat{DCE}=\widehat{BCF}=90^o\)
DC = BC (do ABCD là hình vuông)
=> t/g DEC = t/g BFC (c.g.c)
=> DE = BF (2 cạnh t/ứ(
b/ Xét t/g BEH và t/g DEC có
\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)
\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)
\(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)
=> \(\widehat{BHE}=\widehat{DCB}=90^o\)
=> \(DE\perp BF\)
Xét t/g BDF có
DE ⊥ BF
BC ⊥ DF
DE cắt BC tại E
=> E là trực tâm t/g BDF
=> .... đpcm
c/ Xét t/g CEF có CE = CF ; M là trung điểm EF
=> CM ⊥ EF
=> \(\widehat{KMC}=90^o\)
Tự cm OKMC làhcn
=> OC = KM => AO = KM
Mà AO // KM (cùng vuông góc vs BD)
=> AOMK là hbh
=> OM // AK