Tìm m để phương trình \(4^x-m.2^x+2m-5=0\) có 2 nghiệm trái dấu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Để phương trình trên có hai nghiệm trái dấu
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m\left(m-4\right)< 0\)
\(\Leftrightarrow m^2-4m< 0\)
\(\Leftrightarrow0< m< 4\)
Vậy ...
Phương trình có 2 nghiệm trái dấu khi $ac<0$ hay \(m\left( {m - 4} \right) < 0 \Leftrightarrow 0 < m < 4\)
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{5}{2}< m< 1\)
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
Để pt(1) có hai nghiệm trái dấu thì -(2m+1)<0
\(\Leftrightarrow2m+1>0\)
\(\Leftrightarrow2m>-1\)
hay \(m>-\dfrac{1}{2}\)
1.delta = (-m)2 - 4 ( 2m - 3 ).1 =m2 - 8m + 12 Để phương trình có nghiệm thì delta >= 0
giải bất phương trình: m2 - 8 m + 12 >=0 <=> (m-6) (m-2) >=0 => m> 6 hoặc m<2
3. delta >=0 thì phương rình có 2 nghiệm x 1, x2
theo viet x1 + x2 = m
x1 . x2 = 2m-3
ta có x12 + x22 = (x1 + x2) 2 - 2 x1. x2 = m2 - 2.(2m-3) = m2 -4m + 6
2. m=0 thì phải ???
mk viết thôi, chưa có suy nghĩ và khảo kĩ.. sai mong thông cảm
a
Ta có:
\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)
Nên phương trình luôn có 2 nghiệm phân biệt với mọi m
b
Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)
Vậy .....................
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)