K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a: Xét ΔABC có

N là trung điểm của AC
K là trung điểm của BC

Do đó: NK là đường trung bình của ΔABC

Suy ra: NK//AB

Xét tứ giác ANKB có KN//AB

nên ANKB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANKB là hình thang vuông

Xét tứ giác ADBC có

M la trung điểm chung của AB và DC

nên ADBC là hình bình hành

=>góc ADB=góc ACB

Xét ΔABC có

MN//BC

AM/AB=1/2

=>N là trung điểm của AC

Xét ΔNBC và ΔNEA có

góc NCB=góc NAE

NC=NA

góc BNC=góc ENA

=>ΔNBC=ΔNEA

=>NB=NE

=>AECB là hình bình hành

=>CE=AB=AC=BD và góc AEC=góc ABC

=>góc AEC=góc ADB

Gọi giao của BD và CE là K

Xét ΔKDE có góc KDE=góc KED

nên ΔKDE cân tại K

=>KD=KE

=>KB=KC

=>K nằm trên trung trực của BC

mà AH là trung trực của BC

nên A,H,K thẳng hàng

7 tháng 5 2020

eo biet vi lop 5

7 tháng 5 2020

mik ko biết

23 tháng 8 2019

a) AC = 10cm Þ SABC =37,5 (cm2)

b) Chứng minh được M A E ^ = A M E ^  (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.

c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.

S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )  

Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2

22 tháng 9 2021

mik cam on

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

16 tháng 9 2016

a) vì DNBI là hbh => DN = BI

cmtt NE = KC 

mà DN = NE 

=> BI = KC(1)

ta có KC song song vs NE ( hbh) , BI song song vs DN  (hbh) mà DN và NE thg hàng => BI song song vs KC (2)

Từ 1 và 2 => BIKC là hbh

ta có BC là đg chéo của hbh BIKC mà M là tđ của BC

=> đg chéo IK đi qua trung điểm M của BC => M , I , K thg hàng

12 tháng 11 2016

Bạn thùy dung chưa đọc kĩ đề bài ' đoạn BD mà '