cho phân thức C=3x^2-x/9x^2-6x+1
d/ tìm x để giá trị của phân thức nhận giá trị âm
giải kỹ vs nhanh hộ mik vs nha mai mik kt r!!!cảm ơn trc nhaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A=\frac{2x^2+3x+3}{2x+1}\)nguyên thì :
\(\left(2x^2+3x+3\right)⋮\left(2x+1\right)\)
\(\left(2x^2+x+2x+1+2\right)⋮\left(2x+1\right)\)
\(\left[x\left(2x+1\right)+\left(2x+1\right)+2\right]⋮\left(2x+1\right)\)
\(\left[\left(2x+1\right)\left(x+1\right)+2\right]⋮\left(2x+1\right)\)
Vì \(\left(2x+1\right)\left(x+1\right)⋮\left(2x+1\right)\)
\(\Rightarrow2⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{0;-1;0,5;-1,5\right\}\)
Vậy....
a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
A xác định khi 3x-1 #0 <=> x khác 1/3
b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)
c/ A\(\le0\)Khi:
+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)
+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp
Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)
a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)
b, Ta thay x=8
\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)
c, x<0
\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
4-\(x^2\)+2x
=-x\(^2\)+2x-1+5
=-(x\(^2\)-2x+1)+5
=-(x-1)\(^2\)+5
có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R
vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)