x^2-6xy-25z^2+9y^2
mk sẽ like cho bn lm sớm nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích theo cách nhóm hạng tử nhé bạn !
a, xy + xz - 2y - 2z
= x(y + z) - 2(y + z)
= (x - 2)(y + x)
b, x2 - 6xy + 9y2 - 25z2
= (x - 3y)2 - 25z2
= (x - 3y - 5z)(x - 3y + 5z)
Ngoài ra bạn có thể hỏi mình để bổ sung kiến thức nâng cao !
= ( x - 3y )^2 - (5z)^2
= ( x - 3y - 5z ) ( x - 3y + 5z )
x2 - 6xy - 25z2 + 9y2
= (x - 3y)2 - (5z)2
= (x - 3y - 5z) . (x - 3y + 5z)
# Học tốt #
\(4x^2+4x-9y^2+1\\ =\left(4x^2+4x+1\right)-9y^2\\ =\left(2x+1\right)^2-9y^2\\ =\left(2x+1\right)^2-\left(3y\right)^2\\ =\left[\left(2x+1\right)+3y\right]\left[\left(2x+1\right)-3y\right]\\ =\left(2x+1+3y\right)\left(2x+1-3y\right)\)
\(x^2-6xy+9y^2-25z^2\\ =\left(x^2-6xy+9y^2\right)-25z^2\\ =\left(x-3y\right)^2-25z^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left[\left(x-3y\right)+5z\right]\left[\left(x-3y\right)-5z\right]\\ =\left(x-3y+5z\right)\left(x-3y-5z\right)\)
\(x^2-xy+x-y\\ =\left(x^2-xy\right)+\left(x-y\right)\\ =x\left(x-y\right)+\left(x-y\right)\\ =\left(x-y\right)\left(x-1\right)\)
a)\(x^2-6xy+9y^2-25z^2=\left[x^2-2.x.3y+\left(3y\right)^2\right]-\left(5z\right)^2\)
\(=\left(x-3y\right)^2-\left(5z\right)^2=\left(x-3y-5z\right)\left(x-3y+5z\right)\)
b)\(xyz+x^2yz-6yz=yz\left(x^2+x-6\right)=yz\left(x^2+3x-2x-6\right)\)
\(=yz\left[x\left(x+3\right)-2\left(x+3\right)\right]=yz\left(x-2\right)\left(x+3\right)\)
a.x2-6xy+9y2-25z2
= ( x2-6xy+9y2)-25z2
= [x2-2x3y+(3y)2]-25z2
= (x-3y)2-252
= (x-3y+25)(x-3y-25)
\(a=\left(x+1\right)^2-\left(4y\right)^2=\left(x+1-4y\right)\left(x+1+4y\right)\)
\(b=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(c=\left(2x+1\right)^2-\left(3y\right)^2=\left(2x+1-3y\right)\left(2x+1+3y\right)\)
\(d=\left(x+3y\right)^2-\left(5z\right)^2=\left(x+3y-5z\right)\left(x+3y+5z\right)\)
Lời giải:
1. $xy+xz-2y-2z=(xy+xz)-(2y+2z)$
$=x(y+z)-2(y+z)=(x-2)(y+z)$
2. $x^2-6xy+9y^2)-25z^2$
$=(x-3y)^2-(5z)^2=(x-3y-5z)(x-3y+5z)$
3.
$3x^2-3y^2-12x+12y=(3x^2-3y^2)-(12x-12y)=3(x^2-y^2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)
$\Leftrightarrow A.2\geq \frac{2312}{225}$
$\Leftrightarrow A\geq \frac{1156}{225}$
Vậy $A_{\min}=\frac{1156}{225}$
phân tích hả bạn ?
x2 - 6xy - 25z2 + 9y2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y )2 - ( 5z )2
= ( x - 3y - 5z )( x - 3y + 5z )