K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE

7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em xem bài ở link này nhé! Câu b

2 tháng 1 2017

giúp luôn mk vs

7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài bạn làm nhé!