Tứ giác ABCD có E,F,G,h theo thứ tự là trung điểm của các cạnh AB,BC,CD,AD.Tứ giác EFGH là hình gì?Vì sao?
Giúp với mai mink thi toán rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có: EB=EA (gt); BF=FC (gt)
EF là đường trung bình của tam giác ABC
EF//AC; EF=1/2AC (1)
Xét tam giác ADC có: AH=HD (gt); CG=DG (gt)
HG là dường trung bình của tam giác ADC
HG//AC; HG=1/2AC (2)
Từ (1) và (2) EF//HG; EF=HG
EFGH là hình bình hành
Ta có EH là đường trung bình của tam giác ABD
vì AE=EB; AH=HD
EH//BD
mà AC BD; EH=BD; EF//AC
EFEH hay E=
Vậy EFGH là hình chữ nhật.
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = AC/2
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = AC/2.
+ Ta có:
EF //AC, HG//AC ⇒ EF // HG.
EF = AC/2; HG = AC/2 ⇒ EF = HG
⇒ tứ giác EFGH là hình bình hành.
Nối đường chéo AC.
Trong ∆ ABC ta có:
E là trung điểm của AB (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của ∆ ABC
⇒EF//AC và EF = 1/2 AC
(tính chất đường trung hình tam giác) (1)
Trong ∆ ADC ta có:
H là trung điểm của AD (gt)
G là trung điểm của DC (gt)
Nên HG là đường trung bình của ∆ ADC
⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1)
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2)
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một)
=>Hình đó là hình bình hành
Trả lời :
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = \(\frac{AC}{2}\)
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = \(\frac{AC}{2}\).
+ Ta có:
EF // AC, HG//AC ⇒ EF // HG.
EF = \(\frac{AC}{2}\); HG = \(\frac{AC}{2}\) ⇒ EF = HG
⇒ Tứ giác EFGH là hình bình hành.
À mà bạn tự vẽ hình nhé
Kẻ đường chéo AC(BD cũng được)
Xét tam giác ABC có: AE=EB:BF=CF
Do đó EF là đường trung bình của tam giác ABC
=>EF//AC:EF=1/2AC (1)
TTự: Xét tam giác ADC có: CG=DG:AH=DH
Do đó GH là đường trung bình của tam giác ADC
=>GH//AC:GH=1/2AC (2)
Từ (1) và (2) suy ra EF//GH:EF=GH
Vậy tứ giác EFGH là hình bình hành
Thấy đúng thì chia sẻ nha :D
Xét \(\Delta ABC\) có:
E là trung điểm AB (gt)
F là trung điểm AC (gt)
=> EF là đường trung bình \(\Delta ABC\) (ĐN đường TB \(\Delta\))
=> EF // AC, \(EF=\dfrac{AC}{2}\) (tính chất đường TB \(\Delta\))
Xét \(\Delta ADC\) có:
H là trung điểm AD
G là trung điểm DC
=> HG là đường trung bình \(\Delta ADC\) (ĐN đường TB \(\Delta\))
=> HG // AC, \(HG=\dfrac{BC}{2}\) (tính chất đường TB \(\Delta\))
Ta có: EF // AC, HG // AC
\(EF=\dfrac{AC}{2},HG=\dfrac{AC}{2}\)
=> EF // HG, EF = HG
Xét tứ giác EFGH có:
EF // HG
EF = HG
=> EFGH là hình bình hành (dhnb)
Tứ giác EFGH là hình bình hành.
Cách 1: EB = EA, FB = FC (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
Tương tự HG là đường trung bình của ∆ACD.
Do đó HG // AC
Suy ra EF // HG (1)
Tương tự EH // FG (2)
Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).
Cách 2: EF là đường trung bình của ∆ABC nên EF = 1212AC.
HG là đường trung bình của ∆ACD nên HG = 1212AC.
Suy ra EF = HG
Lại có EF // HG ( chứng minh trên)
Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3).
Ta có EB = EA, FB = FC (gt)
⇒ EF là đường trung bình của ΔABC
⇒EF // AC và EF = AC/2 (1)
HD = HA, GD = GC
⇒ HG là đường trung bình của ΔADC
⇒ HG // AC và HG = AC/2 (2)
Từ (1) và (2) suy ra EF // HG và EF = HG
⇒ Tứ giác EFGH là hình bình hành (*)
EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.
Mà EF // AC, AC ⊥ BD
⇒ EH ⊥ EF ⇒ Ê = 90º (**)
Từ (*) và (**) suy ra EFGH là hình chữ nhật.
Xét ΔABC có:
E là trung điểm AB (gt)
F là trung điểm AC (gt)
=> EF là đường trung bình ΔABC (ĐN đường TB Δ)
=> EF // AC, EF=\(\dfrac{AC}{2}\) (tính chất đường TB Δ)
Xét ΔADC có:
H là trung điểm AD
G là trung điểm DC
=> HG là đường trung bình ΔADC (ĐN đường TB Δ)
=> HG // AC, HG=\(\dfrac{BC}{2}\) (tính chất đường TB Δ)
Ta có: EF // AC, HG // AC
EF=\(\dfrac{AC}{2}\),HG=\(\dfrac{AC}{2}\)
=> EF // HG, EF = HG
Xét tứ giác EFGH có:
EF // HG
EF = HG
=> EFGH là hình bình hành (dhnb)
ok cảm ơn bn