K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2021

a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)

\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)

Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)

\(\Rightarrow m=\left\{-1;0;...;7\right\}\)

b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)

28 tháng 12 2022

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

28 tháng 12 2022

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.

 

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

6 tháng 1 2021

\(\left\{{}\begin{matrix}D=m^2-4\\D_x=9m-32\\D_y=8m-9\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(D\ne0\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Hệ vô nghiệm khi \(\left\{{}\begin{matrix}D=0\\\left[{}\begin{matrix}D_x\ne0\\D_y\ne0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\\left[{}\begin{matrix}m\ne\dfrac{32}{9}\\m\ne\dfrac{9}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\)

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

8 tháng 1 2021

a, \(\left\{{}\begin{matrix}\left(m-1\right)x=m\\\left(m+1\right)y=m+2\end{matrix}\right.\)

=> Hệ luôn có nghiệm duy nhất với mọi m.

b, Với \(x=1,4;y=6,6\)

Ta có: \(\left\{{}\begin{matrix}3.1,4-6.6m=-9\\m.1,4+2.6,6=16\end{matrix}\right.\)

<=> m=2

c, Yêu cầu bài toán <=> (m-1)(m-2) > 0

<=>\(\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

9 tháng 1 2021

sao bạn rút gọn đc ý a vậy. Bn lm rõ hơn đc ko

27 tháng 2 2022

em tham khảo câu e cuối ấy , đó là câu a của e á:

undefined

27 tháng 2 2022

thanks chj yeu

18 tháng 1 2022

thay X=-1, Y=3 giải phương trình ta được m=3

 

12 tháng 2 2022

\(a,\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m^2\\x-my=m+1\end{matrix}\right.\)

\(\Leftrightarrow m^2x-x=2m^2-m-1\Leftrightarrow x\left(m^2-1\right)=2m^2-m-1\)

\(ycầuđềbài\Leftrightarrow m^2-1\ne0\Leftrightarrow m\ne\pm-1\)

\(b,\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{m^2-1}=\dfrac{2m+1}{m+1}=2+\dfrac{-2}{m+1}\\y=mx-2m=\dfrac{m\left(2m+1\right)-2m^2-2m}{m+1}=\dfrac{-m}{m+1}=-1+\dfrac{1}{m+1}\end{matrix}\right.\)

\(\left(x;y\right)\in Z\Leftrightarrow\left\{{}\begin{matrix}m\ne\pm1\\m+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\m+1\inƯ\left(1\right)=\left\{1;-1\right\}\end{matrix}\right.\)

\(\Rightarrow m=0;m=-2\)