Cho hệ pt
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
a) Giải và biện luận theo m
b) Với giá trị nào của m để hai đg thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thứ IV trong xOy
c) Định m để hẹ có nghiệm duy nhất (x;y) sao sho \(P=x^2+y^2\) đạt Min
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\left(1\right)\\2x-y=m+5\left(2\right)\end{matrix}\right.\)
a) Từ (2) => y=2x-m-5, thay vào (1) ta có:
\(\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\)
=>\(\left(m-1\right)x-2mx+m^2=5m-3m+1=0\)
=> \(\left(m-1-2m\right)x+m^2+2m+1=0\)
<=> \(\left(-m-1\right)x+\left(m+1\right)^2=0\)
<=> \(\left(m+1\right)x=\left(m+1\right)^2\) (*)
+Nếu m=-1 => pt (*) tương đương:
0x=0 => pt (*) vô số nghiệm x => y = 2x+1-5 = 2x-4
=> hệ pt có vô số nghiệm (x;2x-4)
+ Nếu m\(\ne\)1 => pt(*) có nghiệm duy nhất x=\(\dfrac{\left(m+1\right)^2}{m+1}=m+1\)
=> y=2.(m+1)-m-5 = 2m+2-m-5=m-3
=> hpt có nghiệm duy nhất (x;y) =(m+1;m-3)
Vậy với m=-1, hệ pt có vô số nghiệm (x;2x-4)
Với m\(\ne\)-1 hệ pt có nghiệm duy nhất (x;y)=(m+1;m-3)
b) Để 2 đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thức IV của hệ tọa độ Oxy thì hệ pt có nghiệm duy nhất x>0, y<0
=> \(\left\{{}\begin{matrix}m+1>0\\m-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
Mà m\(\in\)Z => m\(\in\){0;1;2}
c) Với m≠ -1 thì hệ có nghiệm duy nhất (x;y) = (m+1;m-3)
P=\(x^2+y^2=\left(m+1\right)^2+\left(m-3\right)^2\)
P=\(m^2+2m+1+m^1-6m+9\)
\(P=2m^2-4m+10=2\left(m^2-2m+5\right)=2\left(m^2-2m+1\right)+8=2\left(m-1\right)^2+8\)
Vì (m-1)2 \(\ge\)0 với mọi m ≠-1
=> \(2\left(m-1\right)^2\ge0\)<=> \(2\left(m-1\right)^2+8\ge8\)
=> P\(\ge\) 8
=> P đạt giá trị nhỏ nhất =8 khi m-1=0 <=> m=1