Tìm số nguyên x biết: (x-1) . (x+3) . ( x.x + 2016) < 0 (nhớ ghi bài làm giúp mình nha cảm ơn nhiều lắm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
\(x\left(y-1\right)=-9\)
Ta có : -9 = 1 . ( -9 )
= -1 . 9
= 3 . ( -3 )
Ta có bảng sau
x | 1 | -1 | 9 | -9 | 3 | -3 |
y-1 | -9 | 9 | -1 | 1 | -3 | 3 |
y | -8 | 10 | 0 | 2 | -2 | 4 |
Vậy các cặp số nguyên (x;y) thỏa mãn là :
(1; -8) ; (-1;10) ; (9;0) ; (-9;2) ; (3;-2) ; (-3;4)
Do x.(y-1)=-9 nên: -9 chia hết cho x
=> x;(y-1) ước của 9
Ta có bảng gt sau:
x 1 -1 9 -9 3 -3
y-1 -9 9 -1 1 -3 3
y -8 10 0 2 -2 4
Vậy...
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
a) \(\left|2x-1\right|+\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)
=> vô lý
=> PT vô nghiệm
b) \(\left|x+2\right|+\left|x-3\right|=0\)
\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)
Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi:
\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)
=> PT vô nghiệm
a, Ta có : \(14⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Vì \(2x-3\)là số lẻ
\(\Rightarrow2x-3\in\left\{\pm1;\pm7\right\}\)
... (tự làm)
\(b,\left(x-3\right)\left(y+2\right)=-7\)
\(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(-7\right)=\left\{\pm1;\pm7;\right\}\)
...
\(c,x\left(y-1\right)=9\)
\(x\)và \(y-1\)là số lẻ
\(\Rightarrow x,y-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
...