Cho hs y = (m+5)x + 2m -10
Tìm giá trị m để:
a) Hàm số đồng biến
b) Đồ thị hàm số đ qua điểm A(2;3)
c) Đồ thị hàm số cắt trục trung tại điểm có tung độ là 9
d) Khoảng cách từ O đến đồ thị hàm số lớn nhất
e) C/m đồ thị hàm số luôn đi qua điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số trên đồng biến thì a>0 <=> m+5>0 <=> m>-5
b) thay A(2;3) vào đồ thị hs ta đc 3=(m+5).2+2m-10 =>m=3/4
a) Hàm số đồng biến `<=>m+1>0<=>m>-1`
b) `d_1` đi qua `A(1;2) <=> 2=(m+1).1+m-1<=>m=1`
c) `d_1 //// y=-1/3 x+1 <=>` \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{3}\\m-1\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\m\ne2\end{matrix}\right.\Leftrightarrow m=-\dfrac{4}{3}\)
a. \(\left\{{}\begin{matrix}DB:m+4>0\Leftrightarrow m>-4\\NB:m+4< 0\Leftrightarrow m< -4\end{matrix}\right.\)
\(a,\) Đồng biến \(\Leftrightarrow m+4>0\Leftrightarrow m>-4\)
Nghịch biến \(m+4< 0\Leftrightarrow m< -4\)
\(b,A\left(-1;2\right)\in\left(d\right)\Leftrightarrow-m-4-m+6=2\Leftrightarrow m=0\)
\(\Leftrightarrow y=4x+6\)
a, Hàm số ĐB\(\Leftrightarrow\) a \(>\)0
\(\Leftrightarrow\) m-2 \(>\)0 \(\Leftrightarrow\) m \(>\)2
Vậy m\(>\)2 thì hàm số ĐB.
b,ĐTHS (*) // vs đt y=2x-1 \(\Leftrightarrow\)\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m-2=2\\2m+1\ne-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=4\left(tm\right)\\m\ne-1\end{cases}}\)
Vậy m=4;m\(\neq\)-1 thì ĐTHS (*) // vs đt y=2x-1
c,Gọi A(\(x_0;y_0\)) là điểm cố định mà ĐTHS (*) luôn đi qua vs mọi m
Thay x=\(x_0\) ,y=\(y_0\) vào pt đt (*) ta đc̣:
\(y_0=\left(m-2\right)x_02m+1\)\(\Leftrightarrow\)\(mx_0-2x_0+2m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+2\right)-2x_0+1-y_0=0\left(1\right)\)
Để đt (*) luôn đi qua A vs mọi m thì pt (1) luôn đúng vs mọi m ( pt (1) có vô số nghiệm m)
Điều này xảy ra \(\Leftrightarrow\hept{\begin{cases}x_0+2=0\\-2x_0+1-y_0=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_0=-2\\y_0=5\end{cases}}\)
\(\Rightarrow A\left(-2;5\right)\)
Vậy A(-2;5) là điểm cố định mà ĐTHS (*) luôn luôn đi qua vs mọi m
h: Khi m=3 thì \(y=\left(3-2\right)x+3+1=x+4\)
Gọi \(\alpha\) là góc tạo bởi đồ thị hàm số y=x+4 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
y=x+4
=>x-y+4=0
Khoảng cách từ O(0;0) đến đường thẳng x-y+4=0 là:
\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
a: Để (1) là hàm số bậc nhất thì \(m-2\ne0\)
=>\(m\ne2\)
b: Để (1) đồng biến thì m-2>0
=>m>2
c: Khi m=1 thì \(y=\left(1-2\right)x+1+1=-x+2\)
d: Thay x=2 và y=1 vào (1), ta được:
\(2\left(m-2\right)+m+1=1\)
=>2m-4+m=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
e: Để (1)//y=3x+2 thì \(\left\{{}\begin{matrix}m-2=3\\m+1< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)
=>m=3
f: Để (1) tạo với trục Ox một góc tù thì m-2<0
=>m<2
g: Thay x=0 vào y=5x+6, ta được:
\(y=5\cdot0+6=6\)
Thay x=0 và y=6 vào (1), ta được:
\(0\left(m-2\right)+m+1=6\)
=>m+1=6
=>m=5
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
B1:
Đặt (d): y=(m+5)x+2m-10
c) Để đồ thị hàm số đi qua điểm A(2;3) thì
Thay x=2 và y=3 vào (d), ta được:
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow2m+10+2m-10=3\)
\(\Leftrightarrow4m=3\)
hay \(m=\dfrac{3}{4}\)
a) H/s là bậc nhất ⇔ m+5≠0 ⇔m ≠-5
b) H/s đồng biến ⇔ m+5> 0 ⇔ m> -5
c) H/s đi qua A( 2,3) ⇔ 2=(m+5).2 +2m -10 ⇔ 2m+ 2m +10 -10 =2
⇔ m= \(\dfrac{1}{2}\)
d) H/s cắt trục tung tại điểm có tung độ bằng 9
⇔ x=0 thì y=9 ⇔ (m+5).0 +2m -10 =9
⇔m= \(\dfrac{19}{2}\)
e) H/s đi qua điểm 10 trên trục hoành ⇔ y=0, x=10
⇔ 0= (m+5).10 +2m -10 ⇔m= \(\dfrac{-40}{12}\)
f) h/s song song với y=2x-1
⇔ \(\left\{{}\begin{matrix}m+5=2\\2m-10\ne-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{9}{2}\end{matrix}\right.\)
⇔m=-3
a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3
<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1
b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0
Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1
Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0
c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)
Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\)
<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6
Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm