chứng minh \(a,a^5\)có chữ số tận cùng giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lay 4 chu so thi dong du voi 10000
5^1994=5^2*(5^4)^498
5^4=625 dong du 625 mod 10000
625^2=390625 dong du 625 mod 10000
=>625^n luon dong du 625 mod 10000
=>(5^4)^498 dong du 625 mod 10000
=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000
hay la 5^1994 dong du 15625 mod 10000
Vay 4 chu so tan cung cua 5^1994 la 5625
kết luận chữ số tận cũg có 4 chữ số
\(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)
\(\Rightarrow n^5,n\) co chữ xô tận cùng giông nhau
Hai số có chữ số tận cùng giống nhau nên ta sẽ đi CM: n^5 - n chia hết cho 10
Dễ thấy n^5 và n cùng tính chất chẵn lẻ nên n^5 -n chia hết cho 2 (1)
Ta có: n^5 - n = n(n+1)(n-1)(n²+1)
= n(n+1)(n-1)(n+2)(n-2) + 5n(n-1)(n+1)
Số hạng cuối thì chia hết cho 5 còn số hạng đầu là tích của 5 số tự nhiên liên tiếp nên cũng chia hết cho 5 => n^5-n chia hết cho 5 (2)
Từ (1), (2) và do 2 và 5 là hai số nguyên tố cùng nhau ta sẽ có đpcm!
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Lại có: n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp chia hết cho 5
5n(n-1)(n+1) chia hết cho 5
=> n5-n chia hết cho 5 (1)
Mặt khác: n(n-1)(n-2)(n+2) chia hết cho 2
5n(n-1)(n+1) chia hết cho 2
=> n5-n chia hết cho 2 (2)
Từ (1) và (2) =>n5-n chia hết cho 10
=> n và n5 có chữ số tận cùng giống nhau
Vì a và b là 2 số có tổng chia hết cho 10
Nên tổng các chữ số tận cùng của 2 số này chia hết cho 10
-) Nếu chữ số tận cùng của a và b bằng nhau
Thì chữ số tận cùng của a và b đều là 5 hoặc 0
Do đó a2 và b2 có cùng chữ số tận cùng
-) Nếu chữ số tận cùng của a lớn hơn b ( làm tương tự với c
+) Nếu chữ số tận cùng của a bằng 6
Do đó chữ số tận cùng của b bằng 4
Hai số này bình phương có cùng chữ số tận cùng là 6
+) Nếu chữ số tận cùng của a bằng 7
Do đó chữ số tận cùng của b bằng 3
Hai số này có bình phương có cùng chữ số tận cùng là 9
+) Nếu chữ số tận cùng của a bằng 8
Do đó chữ số tận cùng của b bằng 2
Hai số này có bình phương có cùng chữ số tận cùng là 4
+) Nếu chữ số tận cùng của a bằng 9
Do đó chữ số tận cùng của b bằng 1
Hai số này có bình phương có cùng chữ số tận cùng là 1
Vậy a2 và b2 có chữ số tận cùng giống nhau khi a và b có tổng chia hết cho 10
a5 - a = a.(a4 - 1) = a.(a2 - 1).(a2 + 1) = a.(a - 1).(a + 1).(a2 + 1) (*)
Dễ thấy a.(a - 1).(a + 1) chia hết cho 2 và 3 vì là tích 3 số nguyên liên tiếp
=> a5 - a chia hết cho 2 và 3
Mà (2;3)=1 => a5 - a chia hết cho 6 (1)
Ta đã biết số chính phương a2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4
+ Nếu a2 chia 5 dư 0, do 5 nguyên tố nên a chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
Như vậy, a5 - a luôn chia hết cho 5 với mọi a ϵ Z (2)
Từ (1) và (2), do (5;6)=1 => a5 - a chia hết cho 30 (')
=> a5 - a có tận cùng là 0 hay a5 và a có chữ số tận cùng giống nhau (")
(') và (") chính là đpcm
Ta có: a= a
a5=a.a.a.a.a
=> a và a5 có chữ số tận cùng là a
=> đpcm