GIẢI HỆ PHƯƠNG TRÌNH \(\hept{\begin{cases}x+y-xy=1\\x^2+y^2=5\end{cases}}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-yx +5 =0\(\Rightarrow A=y^2-20>=0\)
\(\sqrt{x+y-5}=20-y^2>=0.\)
\(\Rightarrow y^2=20\)
\(\Rightarrow y=2\sqrt{5}\)
và x =y/2 =\(\sqrt{5}\)
và x +y -5 =0 .(vô lí ) .
\(\Rightarrow\)HPT Vô nghiệm .
Nghiệm j mà lẻ quá trời :))))
Hệ \(\Leftrightarrow\hept{\begin{cases}xy+10y-\frac{1}{2}x-5=xy\\xy-10y+x-10=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y-\frac{1}{2}x-5=0\left(1\right)\\x-10y-10=0\left(2\right)\end{cases}}\)
Lấy (1) cộng (2) ta được:
\(x-\frac{1}{2}x-15=0\)
\(\Leftrightarrow2x-x-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{241}}{4}\left(3\right)\\x=\frac{1-\sqrt{241}}{4}\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được:
\(10y+10=\frac{1+\sqrt{241}}{4}\)
\(\Rightarrow y=\frac{-39+\sqrt{241}}{40}\)
Thay (4) vào (2) ta được \(y=-\frac{39+\sqrt{241}}{40}\)
Vậy.................
1)
\(\hept{\begin{cases}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-y\left(\sqrt{2}+\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
x + y - xy = 1
=> x + y - xy - 1 = 0
=> (x - 1) + y(1 - x) = 0
=> (y - 1)(1 - x) = 0
=> \(\orbr{\begin{cases}y=1\\x=1\end{cases}}\)
Nếu x = 1
Khi đó x2 + y2 = 5
<=> 12 + y2 = 5
=> y2 = 4
=> y = \(\pm\)2
Nếu y = 1
=> x2 + y2 = 5
=> x2 + 12 = 5
=> x2 = 4
=> x = \(\pm\)2
Vậy các cặp (x;y) thỏa mãn là (1;2) ; (1;-2) ; (2;1) ; (-2;1)