K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2021

\(a>2,b>2\Rightarrow\left(a-2\right)\left(b-2\right)>0\)

\(\Rightarrow ab+4>2a+2b\)

\(\Rightarrow ab>a+b+\left(a+b-4\right)>a+b\)

\(\Rightarrow ab>a+b\) (đpcm)

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 1 2021

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

21 tháng 5 2016

Ta có \(A=a^5b-ab^5=a^5b-ab-ab^5+ab\) 

 \(A=\left(a^5b-ab\right)-\left(ab^5-ab\right)\)

\(A=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta có \(m^5-m=m\left(m^4-1\right)=m\left(m^2-1\right)\left(m^2+1\right)\)

\(=m\left(m+1\right)\left(m-1\right)\left(m^2-4+5\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m^2-4\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)-5m\left(m-1\right)\left(m+1\right)\)

\(=\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)-5\left(m-1\right)m\left(m+1\right)\)

Vì \(m-2;m-1;m;m+1;m+2\) là 5 số nguyên liên tiếp nên chia hết cho 2 ; 3 ; 5

Mà \(\left(2;3;5\right)=1\)

\(\Rightarrow\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)\) chia hết cho \(2\times3\times5=30\)

\(\Rightarrow m^5-m\) chia hết cho 30 

\(\Rightarrow a^5-a\) và \(b^5-b\) Chia hết cho 30

\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)\) chia hết cho 30 

\(\Rightarrow A=a^5b-ab^5\) chia hết cho 30 

Vậy A chia hết cho 30

31 tháng 12 2023

a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

=>(a+5)(b-6)=(a-5)(b+6)

=>ab-6a+5b-30=ab+6a-5b-30

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

=>\(\dfrac{a}{b}=\dfrac{5}{6}\)

b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

14 tháng 8 2018

a, a2+b2+c2+3=2(a+b+c)

a2+b2+c2+3-2a-2b-2c=0

(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

(a-1)2+(b-1)2+(c-1)2=0

mà (a-1)2+(b-1)2+(c-1)2\(\ge\)0

=>\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

=> a=b=c=1

10 tháng 10 2021

1, Áp dụng BĐT cosi cho a,b,c>0

\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

10 tháng 10 2021

\(2,\)

Ta có

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng BĐT cm ở câu 1

Suy ra đpcm

 

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1