Cho hàm số \(y=f\left(x\right)=ax\left(a\ne0\right)\) xác định với mọi \(x\in Q\)
Tìm giá rị của a để \(f\left(x_1\right)\cdot f\left(x_2\right)=f\left(x_1\cdot x_2\right)\)
Giúp mình với :3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
\(f\left(\frac{5}{7}\right)=f\left(\frac{1}{\frac{7}{5}}\right)=\frac{1}{\left(\frac{7}{5}\right)^2}.f\left(\frac{7}{5}\right)=\frac{25}{49}.f\left(1+\frac{2}{5}\right)=\frac{25}{49}.\left(f\left(1\right)+f\left(\frac{2}{5}\right)\right)\)
Ta có : \(f\left(\frac{2}{5}\right)=f\left(\frac{1}{5}+\frac{1}{5}\right)=f\left(\frac{1}{5}\right)+f\left(\frac{1}{5}\right)=2.f\left(\frac{1}{5}\right)=2.\frac{1}{5^2}.f\left(5\right)=\frac{2}{25}.f\left(1+1+1+1+1\right)\)
\(=\frac{2}{25}.\left(f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)\right)=\frac{2}{25}.5=\frac{2}{5}\)
Vậy \(f\left(\frac{5}{7}\right)=\frac{49}{25}.\left(1+\frac{2}{5}\right)=\frac{25}{49}.\frac{7}{5}=\frac{5}{7}\)
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)