giải phương trình \(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Ngọc Thạch lớp 8 kì hai nha.
\(BPT\Leftrightarrow x\sqrt[3]{25x\left(2x^2+9\right)}\le4x^2+3\\ \Leftrightarrow\sqrt[3]{25x^4\left(2x^2+9\right)}\le4x^2+3\left(1\right)\)
Áp dụng BĐT cosi:
\(\sqrt[3]{5x^2\cdot5x^2\left(2x^2+9\right)}\le\dfrac{5x^2+5x^2+2x^2+9}{3}=\dfrac{12x^2+9}{3}=4x^2+3\)
Vậy \(\left(1\right)\) luôn đúng
Dấu \("="\Leftrightarrow5x^2=2x^2+9\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
a: =>3x-9+5+10x=90
=>13x-4=90
=>13x=94
hay x=94/13
b: \(\Leftrightarrow2x-4-x-1=3x-11\)
=>3x-11=x-5
=>2x=6
hay x=3(nhận)
\(\dfrac{x^2\left(x+5\right)^2+25x^2-11\left(x+5\right)^2}{\left(x+5\right)^2}=\dfrac{x^4+10x^3+50x^2-11x^2-11.2.5x-11.5.5}{\left(x+5\right)^2}\)
\(\dfrac{\left[x^4-x^3-5x^2\right]+\left[11x^3-11x^2-11.5x\right]+55x^2-55x-5.55}{\left(x+5\right)^2}\)
\(\dfrac{x^2\left(x^2-x-5\right)+11x\left(x^2-x-5\right)+55\left(x^2-x-5\right)}{\left(x+5\right)^2}=\dfrac{\left(x^2-x-5\right)\left(x^2+11x+55\right)}{\left(x+5\right)^2}\)
\(\left[{}\begin{matrix}x^2-x-5=0\left(1\right)\\x^2+11x+55=0\left(2\right)\end{matrix}\right.\)
(2) vô nghiệm
(1)\(\Leftrightarrow\) \(\left[x^2-\dfrac{1}{2}x+\dfrac{1}{4}\right]=\dfrac{21}{4}\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{21}{4}\)
\(\left[{}\begin{matrix}x=\dfrac{1-\sqrt{21}}{2}\\x=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\)
\(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\) (ĐKXĐ: \(x\ne-5\))
\(\Leftrightarrow\dfrac{x^2\left(x+5\right)^2+25x^2}{\left(x+5\right)^2}=\dfrac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)
\(\Rightarrow x^4+10x^3+25x^2+25x^2-11x^2-110x-275=0\\ \Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)
mình ko biết phân tích sao nữa
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\\ \Leftrightarrow2x-4-x-1-3x+11=0\\ \Leftrightarrow-2x+6=0\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2x-4-x-1=3x-11\left(khử\cdot mẫu\right)\)
\(\Leftrightarrow2x-x-3x=-11+4+1\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
ĐK: \(x\ne-5\)
\(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\)
\(\Leftrightarrow x^2+\dfrac{25x^2}{\left(x+5\right)^2}-\dfrac{10x^2}{x+5}+\dfrac{10x^2}{x+5}=11\)
\(\Leftrightarrow\left(x-\dfrac{5x}{x+5}\right)^2+\dfrac{10x^2}{x+5}=11\)
\(\Leftrightarrow\dfrac{x^4}{\left(x+5\right)^2}+\dfrac{10x^2}{x+5}=11\)
\(\Leftrightarrow y^2+10y-11=0\left(y=\dfrac{x^2}{x+5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-11\end{matrix}\right.\)
TH1: \(y=1\)
\(\Leftrightarrow\dfrac{x^2}{x+5}=1\)
\(\Leftrightarrow x^2=x+5\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\left(tm\right)\)
TH2: \(y=-11\)
\(\Leftrightarrow\dfrac{x^2}{x+5}=-11\)
\(\Leftrightarrow x^2=-11x-55\)
\(\Rightarrow\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{1\pm\sqrt{21}}{2}\)