Chứng tỏ rằng với mọi số nguyên x,y thì 2x+3ychia hết cho 17<=>9x + 5y chia hết cho 17
mk đang cần gấp nên nhờ mn giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+49x+5y chia hết cho 7
=>50x+5y chia hết cho 7
=>5.(10x+y) chia hết cho 7
Mà (5,7)=1
=>10x+y chia hết cho 7
=>ĐPCM
Ngược lại: 10x+y chia hết cho 7
=>5.(10x+y) chia hết cho 7
=>50x+5y chia hết cho 7
=>x+49x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+5y chia hết cho 7
=>ĐPCM
Giả sử n2+5n+5 chia hết cho 25
=> n2+5n+5 chia hết cho 5
=> n2 chia hết cho 5 (vì 5n+5 chia hết cho 5)
Mà 5 là số nguyên tố
=> n chia hết cho 5
=> n = 5k (k thuộc N)
Ta có: n2 + 5n + 5 = (5k)2 + 5.5k + 5 = 25k2 + 25k + 5
Vì 25k2 + 25k chia hết cho 25, 5 không chia hết cho 25
=> 25k2 + 25k + 5 không chia hết cho 25 hay n2 + 5n + 5 không chia hết cho 25
=> giả sử sai
Vậy...
a) Ko có chuyện đóa đâu nhé bạn !!!!!! ❤❤❤
Phần thuận : \(9x+5y⋮17\Rightarrow2x+3y⋮17\)
Ta có: \(9x+5y⋮17\)
Ta lại có : \(3\left(9x+5y\right)-5\left(2x+3y\right)\)
\(=27x+15y-10x-15y=17x⋮17\)
mà \(9x+5y⋮17\Rightarrow3\left(9x+5y\right)⋮17\)
\(\Rightarrow5\left(2x+3y\right)⋮17\)
Vì \(\left(5;17\right)=1\Rightarrow2x+3y⋮17\)
Phần đảo : \(2x+3y⋮17\Rightarrow9x+5y⋮x\)
Làm tương trự như phần đảo nhưng lấy \(5\left(2x+3y\right)-3\left(9x+5y\right)=-17x⋮17\)
\(\Rightarrow...\)