GIÚP MÌNH VỚI: Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, đường kính R. 3 đường cao AB,BM,CN của tam giác ABC cắt nhau tại H
a/ Chứng minh tứ giác CDHM và ABDM nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác CDHM
b/ Chứng minh: AN.AB= AH.AD
c/ Gọi K là giao điểm của hai đường tròn tâm I và đường tròn tâm O. Chứng minh: OHKI là hình thang
d/ Gọi S là trung điểm của BH. Chứng minh: nếu MK vuông góc với BC thì 3 điểm K,D,S thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
b: Xét ΔABC có
BF là đường cao
CE là đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
hay AH⊥BC
Có hình không bạn? Mình đang bí về cái hình của bài này vẽ sao á.
a) Do đg cao BE cắt đg cao CF ở H
=> H là trực tâm của tam giác ABC
=> AH là đg cao => AH ⊥ BC (đpcm)
b) Xét ΔAEB và ΔAFC có
\(\widehat{E}=\widehat{F}=90^0\)
\(\widehat{ABC}\) chung
=> ΔAEB ∼ ΔAFC
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
\(\Rightarrow AE\times AC=AF\times AB\left(đpcm\right)\)
c) Xét Δ AEF và ΔABC
\(\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\widehat{ABC}\)chung
=> Δ AEF ∼ ΔABC (đpcm)
bn ơi câu c là chứng minh 3 đường thẳng hàng mà bn
Ta có: AB=13 cm
BD=5 cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABD
AB^2=BD^2+AD^2
=> AD^2=AB^2-BD^2=13^2-5^2=144
=> AD=\(\sqrt{144}=12cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông ADC
AC^2=AD^2+DC^2
=> DC^2=AC^2-AD^2=15^2-12^2=81
DC=\(\sqrt{81}=9cm\)
Câu 2 từ từ
Hình tự vẽ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Théo đề ta có: AB+AC=49
AB-AC=7
=> AB=(49+7)/2=28 cm
AC=28-7=21 cm
Áp dụng định lí Py ta go vào tam giác vuông ABC
BC^2=AC^2+AB^2=28^2+21^2=1225
BC=\(\sqrt{1225}=35cm\)
1) Áp dụng định lý Py-ta-go cho tam giác vuông ABD, ta có:
AD2 + BD2 = AB2 => AD2 + 52 = 132 => AD2 = 132 - 52 = 169 - 25 = 144 = 122 => AD = 12 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ADC, ta có:
AD2 + DC2 = AC2 => 122 + DC2 = 152 => DC2 = 152 - 122 = 225 - 144 = 81 = 92 => CD = 9
2) AB = (49 + 7) : 2 = 28 cm
AC = 28 - 7 = 21 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2 = 282 + 212 = 352 => BC = 35 cm
a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)