Cho tam giác ABC có AB = 8cm, AC = 20cm. Lấy điểm E trên AB sao cho AE = 6cm. Lấy điểm D trên AC sao cho ED // BC.
a) Tính CD
b) Lấy F đối xứng với A qua E. DF cắt BC tại I. Chứng minh rằng: \(\frac{BC}{ED}\)+ \(\frac{BI}{ED}\)= 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
a/
Ta có
ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)
b/
Ta có
AE=EF=6 cm (F đối xứng A qua E)
BE=AB-AE=8-6=2 cm
FB=EF-BE=6-2=4 cm
Do ED//BC nên
\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)
\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)